zoukankan      html  css  js  c++  java
  • HDU 5009 Paint Pearls (动态规划)

    Paint Pearls



    Problem Description
    Lee has a string of n pearls. In the beginning, all the pearls have no color. He plans to color the pearls to make it more fascinating. He drew his ideal pattern of the string on a paper and asks for your help. 

    In each operation, he selects some continuous pearls and all these pearls will be painted to their target colors. When he paints a string which has k different target colors, Lee will cost k2 points. 

    Now, Lee wants to cost as few as possible to get his ideal string. You should tell him the minimal cost.
     

    Input
    There are multiple test cases. Please process till EOF.

    For each test case, the first line contains an integer n(1 ≤ n ≤ 5×104), indicating the number of pearls. The second line contains a1,a2,...,an (1 ≤ ai ≤ 109) indicating the target color of each pearl.
     

    Output
    For each test case, output the minimal cost in a line.
     

    Sample Input
    3 1 3 3 10 3 4 2 4 4 2 4 3 2 2
     

    Sample Output
    2 7
     

    Source
     

    Recommend
    hujie
     


    题目大意:

               给定一系列的颜色。能够划分为随意多个随意大小的区间。每一个区间的花费为 区间颜色数的平方,问你总花费最小是多少?


    解题思路:

             用动态规划,双向链表事实上就是维护前面不同的元素,同样的元素删除。

            我參照的是:http://blog.csdn.net/u011345136/article/details/39759935

    解题代码:

    #include <iostream>
    #include <map>
    #include <cstdio>
    using namespace std;
    
    const int maxn=51000;
    int n,d[maxn],dp[maxn],pre[maxn],next[maxn];
    map <int,int> mp;
    
    //mp 记录数字相应的下标
    //pre 记录前驱
    //next 记录后继
    void solve(){
        mp.clear();
        for(int i=1;i<=n;i++){
            pre[i]=i-1;
            next[i]=i+1;
            dp[i]=(1<<30);
        }
        dp[0]=0;pre[0]=-1;
        for(int i=1;i<=n;i++){
            if(mp.find(d[i])==mp.end()) mp[d[i]]=i;
            else{
                int id=mp[d[i]];
                next[pre[id]]=next[id];
                pre[next[id]]=pre[id];
                mp[d[i]]=i;
            }
            int c=0;
            for(int j=pre[i];j!=-1;j=pre[j]){
                c++;
                dp[i]=min(dp[i],dp[j]+c*c);
                if(c*c>=i) break;
            }
        }
        printf("%d
    ",dp[n]);
    }
    
    int main(){
        while(scanf("%d",&n)!=EOF){
            for(int i=1;i<=n;i++) scanf("%d",&d[i]);
            solve();
        }
        return 0;
    }
    



  • 相关阅读:
    Educational Codeforces Round 72 (Rated for Div. 2)
    2249: Altruistic Amphibians 01背包
    lh的简单图论
    E. XOR Guessing 交互题 Educational Codeforces Round 71 (Rated for Div. 2)
    C. Helga Hufflepuff's Cup 树形dp 难
    B. Marvolo Gaunt's Ring 前缀后缀
    android学习-IPC机制之ACtivity绑定Service通信
    大数组分时加载算法 timedChunk
    log4j 配置和使用
    fastjson 配置和使用
  • 原文地址:https://www.cnblogs.com/mfrbuaa/p/5095919.html
Copyright © 2011-2022 走看看