zoukankan      html  css  js  c++  java
  • 深度学习面试题20:GoogLeNet(Inception V1)

    目录

      简介

      网络结构

      对应代码

      网络说明

      参考资料


    简介

    2014年,GoogLeNet和VGG是当年ImageNet挑战赛(ILSVRC14)的双雄,GoogLeNet获得了第一名、VGG获得了第二名,这两类模型结构的共同特点是层次更深了。VGG继承了LeNet以及AlexNet的一些框架结构,而GoogLeNet则做了更加大胆的网络结构尝试,虽然深度只有22层,但大小却比AlexNet和VGG小很多,GoogleNet参数为500万个,AlexNet参数个数是GoogleNet的12倍,VGGNet参数又是AlexNet的3倍,因此在内存或计算资源有限时,GoogleNet是比较好的选择;从模型结果来看,GoogLeNet的性能却更加优越。

    GoogLeNet是谷歌(Google)研究出来的深度网络结构,为什么不叫“GoogleNet”,而叫“GoogLeNet”,是为了向“LeNet”致敬,因此取名为“GoogLeNet”

    GoogLeNet团队要打造一个Inception模块(名字源于盗梦空间),让深度网络的表现更好。

     返回目录

    网络结构

     

    PS:Slim是2016年开发出来的,即使在InceptionV1中,他也没有使用论文里说的5*5的卷积核,而是用的3*3的卷积核。

     返回目录

    对应代码

    这里采用的官网的代码tensorflow/models/research/slim/nets/inception_v1.py

    下载方式

    git clone https://github.com/tensorflow/models.git

    这个项目比较大,如果下载很慢的话,可以在qq群:537594183文件中只下载slim的代码即可。

    # Copyright 2016 The TensorFlow Authors. All Rights Reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    # http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    # ==============================================================================
    """Contains the definition for inception v1 classification network."""
    
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    
    import tensorflow as tf
    
    from nets import inception_utils
    
    slim = tf.contrib.slim
    trunc_normal = lambda stddev: tf.truncated_normal_initializer(0.0, stddev)
    
    
    def inception_v1_base(inputs,
                          final_endpoint='Mixed_5c',
                          include_root_block=True,
                          scope='InceptionV1'):
      """Defines the Inception V1 base architecture.
    
      This architecture is defined in:
        Going deeper with convolutions
        Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
        Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
        http://arxiv.org/pdf/1409.4842v1.pdf.
    
      Args:
        inputs: a tensor of size [batch_size, height, width, channels].
        final_endpoint: specifies the endpoint to construct the network up to. It
          can be one of ['Conv2d_1a_7x7', 'MaxPool_2a_3x3', 'Conv2d_2b_1x1',
          'Conv2d_2c_3x3', 'MaxPool_3a_3x3', 'Mixed_3b', 'Mixed_3c',
          'MaxPool_4a_3x3', 'Mixed_4b', 'Mixed_4c', 'Mixed_4d', 'Mixed_4e',
          'Mixed_4f', 'MaxPool_5a_2x2', 'Mixed_5b', 'Mixed_5c']. If
          include_root_block is False, ['Conv2d_1a_7x7', 'MaxPool_2a_3x3',
          'Conv2d_2b_1x1', 'Conv2d_2c_3x3', 'MaxPool_3a_3x3'] will not be available.
        include_root_block: If True, include the convolution and max-pooling layers
          before the inception modules. If False, excludes those layers.
        scope: Optional variable_scope.
    
      Returns:
        A dictionary from components of the network to the corresponding activation.
    
      Raises:
        ValueError: if final_endpoint is not set to one of the predefined values.
      """
      end_points = {}
      with tf.variable_scope(scope, 'InceptionV1', [inputs]):
        with slim.arg_scope(
            [slim.conv2d, slim.fully_connected],
            weights_initializer=trunc_normal(0.01)):
          with slim.arg_scope([slim.conv2d, slim.max_pool2d],
                              stride=1, padding='SAME'):
            net = inputs
            if include_root_block:
              end_point = 'Conv2d_1a_7x7'
              net = slim.conv2d(inputs, 64, [7, 7], stride=2, scope=end_point)
              end_points[end_point] = net
              if final_endpoint == end_point:
                return net, end_points
              end_point = 'MaxPool_2a_3x3'
              net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point)
              end_points[end_point] = net
              if final_endpoint == end_point:
                return net, end_points
              end_point = 'Conv2d_2b_1x1'
              net = slim.conv2d(net, 64, [1, 1], scope=end_point)
              end_points[end_point] = net
              if final_endpoint == end_point:
                return net, end_points
              end_point = 'Conv2d_2c_3x3'
              net = slim.conv2d(net, 192, [3, 3], scope=end_point)
              end_points[end_point] = net
              if final_endpoint == end_point:
                return net, end_points
              end_point = 'MaxPool_3a_3x3'
              net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point)
              end_points[end_point] = net
              if final_endpoint == end_point:
                return net, end_points
    
            end_point = 'Mixed_3b'
            with tf.variable_scope(end_point):
              with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 64, [1, 1], scope='Conv2d_0a_1x1')
              with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 96, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, 128, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, 16, [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, 32, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_3'):
                branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, 32, [1, 1], scope='Conv2d_0b_1x1')
              net = tf.concat(
                  axis=3, values=[branch_0, branch_1, branch_2, branch_3])
            end_points[end_point] = net
            if final_endpoint == end_point: return net, end_points
    
            end_point = 'Mixed_3c'
            with tf.variable_scope(end_point):
              with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1')
              with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, 192, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, 32, [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, 96, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_3'):
                branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1')
              net = tf.concat(
                  axis=3, values=[branch_0, branch_1, branch_2, branch_3])
            end_points[end_point] = net
            if final_endpoint == end_point: return net, end_points
    
            end_point = 'MaxPool_4a_3x3'
            net = slim.max_pool2d(net, [3, 3], stride=2, scope=end_point)
            end_points[end_point] = net
            if final_endpoint == end_point: return net, end_points
    
            end_point = 'Mixed_4b'
            with tf.variable_scope(end_point):
              with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
              with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 96, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, 208, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, 16, [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, 48, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_3'):
                branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1')
              net = tf.concat(
                  axis=3, values=[branch_0, branch_1, branch_2, branch_3])
            end_points[end_point] = net
            if final_endpoint == end_point: return net, end_points
    
            end_point = 'Mixed_4c'
            with tf.variable_scope(end_point):
              with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
              with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 112, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, 224, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, 24, [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, 64, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_3'):
                branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1')
              net = tf.concat(
                  axis=3, values=[branch_0, branch_1, branch_2, branch_3])
            end_points[end_point] = net
            if final_endpoint == end_point: return net, end_points
    
            end_point = 'Mixed_4d'
            with tf.variable_scope(end_point):
              with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1')
              with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 128, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, 256, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, 24, [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, 64, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_3'):
                branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1')
              net = tf.concat(
                  axis=3, values=[branch_0, branch_1, branch_2, branch_3])
            end_points[end_point] = net
            if final_endpoint == end_point: return net, end_points
    
            end_point = 'Mixed_4e'
            with tf.variable_scope(end_point):
              with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 112, [1, 1], scope='Conv2d_0a_1x1')
              with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 144, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, 288, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, 32, [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, 64, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_3'):
                branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, 64, [1, 1], scope='Conv2d_0b_1x1')
              net = tf.concat(
                  axis=3, values=[branch_0, branch_1, branch_2, branch_3])
            end_points[end_point] = net
            if final_endpoint == end_point: return net, end_points
    
            end_point = 'Mixed_4f'
            with tf.variable_scope(end_point):
              with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 256, [1, 1], scope='Conv2d_0a_1x1')
              with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, 320, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, 32, [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, 128, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_3'):
                branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, 128, [1, 1], scope='Conv2d_0b_1x1')
              net = tf.concat(
                  axis=3, values=[branch_0, branch_1, branch_2, branch_3])
            end_points[end_point] = net
            if final_endpoint == end_point: return net, end_points
    
            end_point = 'MaxPool_5a_2x2'
            net = slim.max_pool2d(net, [2, 2], stride=2, scope=end_point)
            end_points[end_point] = net
            if final_endpoint == end_point: return net, end_points
    
            end_point = 'Mixed_5b'
            with tf.variable_scope(end_point):
              with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 256, [1, 1], scope='Conv2d_0a_1x1')
              with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 160, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, 320, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, 32, [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, 128, [3, 3], scope='Conv2d_0a_3x3')
              with tf.variable_scope('Branch_3'):
                branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, 128, [1, 1], scope='Conv2d_0b_1x1')
              net = tf.concat(
                  axis=3, values=[branch_0, branch_1, branch_2, branch_3])
            end_points[end_point] = net
            if final_endpoint == end_point: return net, end_points
    
            end_point = 'Mixed_5c'
            with tf.variable_scope(end_point):
              with tf.variable_scope('Branch_0'):
                branch_0 = slim.conv2d(net, 384, [1, 1], scope='Conv2d_0a_1x1')
              with tf.variable_scope('Branch_1'):
                branch_1 = slim.conv2d(net, 192, [1, 1], scope='Conv2d_0a_1x1')
                branch_1 = slim.conv2d(branch_1, 384, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_2'):
                branch_2 = slim.conv2d(net, 48, [1, 1], scope='Conv2d_0a_1x1')
                branch_2 = slim.conv2d(branch_2, 128, [3, 3], scope='Conv2d_0b_3x3')
              with tf.variable_scope('Branch_3'):
                branch_3 = slim.max_pool2d(net, [3, 3], scope='MaxPool_0a_3x3')
                branch_3 = slim.conv2d(branch_3, 128, [1, 1], scope='Conv2d_0b_1x1')
              net = tf.concat(
                  axis=3, values=[branch_0, branch_1, branch_2, branch_3])
            end_points[end_point] = net
            if final_endpoint == end_point: return net, end_points
        raise ValueError('Unknown final endpoint %s' % final_endpoint)
    
    
    def inception_v1(inputs,
                     num_classes=1000,
                     is_training=True,
                     dropout_keep_prob=0.8,
                     prediction_fn=slim.softmax,
                     spatial_squeeze=True,
                     reuse=None,
                     scope='InceptionV1',
                     global_pool=False):
      """Defines the Inception V1 architecture.
    
      This architecture is defined in:
    
        Going deeper with convolutions
        Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
        Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich.
        http://arxiv.org/pdf/1409.4842v1.pdf.
    
      The default image size used to train this network is 224x224.
    
      Args:
        inputs: a tensor of size [batch_size, height, width, channels].
        num_classes: number of predicted classes. If 0 or None, the logits layer
          is omitted and the input features to the logits layer (before dropout)
          are returned instead.
        is_training: whether is training or not.
        dropout_keep_prob: the percentage of activation values that are retained.
        prediction_fn: a function to get predictions out of logits.
        spatial_squeeze: if True, logits is of shape [B, C], if false logits is of
            shape [B, 1, 1, C], where B is batch_size and C is number of classes.
        reuse: whether or not the network and its variables should be reused. To be
          able to reuse 'scope' must be given.
        scope: Optional variable_scope.
        global_pool: Optional boolean flag to control the avgpooling before the
          logits layer. If false or unset, pooling is done with a fixed window
          that reduces default-sized inputs to 1x1, while larger inputs lead to
          larger outputs. If true, any input size is pooled down to 1x1.
    
      Returns:
        net: a Tensor with the logits (pre-softmax activations) if num_classes
          is a non-zero integer, or the non-dropped-out input to the logits layer
          if num_classes is 0 or None.
        end_points: a dictionary from components of the network to the corresponding
          activation.
      """
      # Final pooling and prediction
      with tf.variable_scope(scope, 'InceptionV1', [inputs], reuse=reuse) as scope:
        with slim.arg_scope([slim.batch_norm, slim.dropout],
                            is_training=is_training):
          net, end_points = inception_v1_base(inputs, scope=scope)
          with tf.variable_scope('Logits'):
            if global_pool:
              # Global average pooling.
              net = tf.reduce_mean(net, [1, 2], keep_dims=True, name='global_pool')
              end_points['global_pool'] = net
            else:
              # Pooling with a fixed kernel size.
              net = slim.avg_pool2d(net, [7, 7], stride=1, scope='AvgPool_0a_7x7')
              end_points['AvgPool_0a_7x7'] = net
            if not num_classes:
              return net, end_points
            net = slim.dropout(net, dropout_keep_prob, scope='Dropout_0b')
            logits = slim.conv2d(net, num_classes, [1, 1], activation_fn=None,
                                 normalizer_fn=None, scope='Conv2d_0c_1x1')
            if spatial_squeeze:
              logits = tf.squeeze(logits, [1, 2], name='SpatialSqueeze')
    
            end_points['Logits'] = logits
            end_points['Predictions'] = prediction_fn(logits, scope='Predictions')
      return logits, end_points
    inception_v1.default_image_size = 224
    
    inception_v1_arg_scope = inception_utils.inception_arg_scope
    View Code

     返回目录

    网络说明

    (1)GoogLeNet采用了模块化的结构(Inception结构),方便增添和修改;

    (2)网络最后采用了average pooling(平均池化)来代替全连接层,,事实证明这样可以将准确率提高0.6%。但是,实际在最后还是加了一个全连接层,主要是为了方便对输出进行灵活调整;

    (3)虽然移除了全连接,但是网络中依然使用了Dropout ; 

    (4)辅助分类器的两个分支有什么用呢?

    作用一:可以把他看做inception网络中的一个小细节,它确保了即便是隐藏单元和中间层也参与了特征计算,他们也能预测图片的类别,他在inception网络中起到一种调整的效果,并且能防止网络发生过拟合。

    作用二:给定深度相对较大的网络,有效传播梯度反向通过所有层的能力是一个问题。通过将辅助分类器添加到这些中间层,可以期望较低阶段分类器的判别力。在训练期间,它们的损失以折扣权重(辅助分类器损失的权重是0.3)加到网络的整个损失上。

    Inception V1的参数量=5607184,约为560w

     返回目录

    参考资料

    《图解深度学习与神经网络:从张量到TensorFlow实现》_张平

    inceptionV1-Going Deeper with Convolutions

    http://noahsnail.com/2017/07/21/2017-07-21-GoogleNet%E8%AE%BA%E6%96%87%E7%BF%BB%E8%AF%91%E2%80%94%E2%80%94%E4%B8%AD%E8%8B%B1%E6%96%87%E5%AF%B9%E7%85%A7/

    《深-度-学-习-核-心-技-术-与-实-践》

    大话CNN经典模型:GoogLeNet(从Inception v1到v4的演进)

    https://my.oschina.net/u/876354/blog/1637819

     返回目录

  • 相关阅读:
    codevs 2149 矩形周长
    codevs 3044 矩形面积求并
    codevs 1293 送给圣诞夜的极光
    codevs 2806 红与黑
    codevs 1536 海战
    codevs 1262 不要把球传我
    codevs 2606 约数和问题
    BZOJ 2301 problem b
    BZOJ 3994 约数个数和
    codevs 1173 最优贸易
  • 原文地址:https://www.cnblogs.com/mfryf/p/11381352.html
Copyright © 2011-2022 走看看