zoukankan      html  css  js  c++  java
  • 使用TensorFlow的递归神经网络(LSTM)进行序列预测

    本篇文章介绍使用TensorFlow的递归神经网络(LSTM)进行序列预测。作者在网上找到的使用LSTM模型的案例都是解决自然语言处理的问题,而没有一个是来预测连续值的。

    所以呢,这里是基于历史观察数据进行实数序列的预测。传统的神经网络模型并不能解决这种问题,进而开发出递归神经网络模型,递归神经网络模型可以存储历史数据来预测未来的事情。

    在这个例子里将预测几个函数:

    • 正弦函数:sin

    • 同时存在正弦函数和余弦函数:sin和cos

    • x*sin(x)

    首先,建立LSTM模型,lstm_model,这个模型有一系列的不同时间步的lstm单元(cell),紧跟其后的是稠密层。

    def lstm_model(time_steps, rnn_layers, dense_layers=None):
         def lstm_cells(layers):
             if isinstance(layers[0], dict):
                 return [tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.BasicLSTMCell(layer['steps']), layer['keep_prob'])
                         if layer.get('keep_prob') else tf.nn.rnn_cell.BasicLSTMCell(layer['steps'])
                         for layer in layers]
             return [tf.nn.rnn_cell.BasicLSTMCell(steps) for steps in layers]
         def dnn_layers(input_layers, layers):
             if layers and isinstance(layers, dict):
                 return skflow.ops.dnn(input_layers,
                                       layers['layers'],
                                       activation=layers.get('activation'),
                                       dropout=layers.get('dropout'))
             elif layers:
                 return skflow.ops.dnn(input_layers, layers)
             else:
                 return input_layers
         def _lstm_model(X, y):
             stacked_lstm = tf.nn.rnn_cell.MultiRNNCell(lstm_cells(rnn_layers))
             x_ = skflow.ops.split_squeeze(1, time_steps, X)
             output, layers = tf.nn.rnn(stacked_lstm, x_, dtype=dtypes.float32)
             output = dnn_layers(output[-1], dense_layers)
             return skflow.models.linear_regression(output, y)
         return _lstm_model
    

    所建立的模型期望输入数据的维度与(batch size,第一个lstm cell的时间步长time_step,特征数量num_features)相关。 
    接下来我们按模型所能接受的数据方式来准备数据。

    def rnn_data(data, time_steps, labels=False):
        """
        creates new data frame based on previous observation
          * example:
            l = [1, 2, 3, 4, 5]
            time_steps = 2
            -> labels == False [[1, 2], [2, 3], [3, 4]]
            -> labels == True [2, 3, 4, 5]
        """
        rnn_df = []
        for i in range(len(data) - time_steps):
            if labels:
                try:
                    rnn_df.append(data.iloc[i + time_steps].as_matrix())
                except AttributeError:
                    rnn_df.append(data.iloc[i + time_steps])
            else:
                data_ = data.iloc[i: i + time_steps].as_matrix()
                rnn_df.append(data_ if len(data_.shape) > 1 else [[i] for i in data_])
        return np.array(rnn_df)
    def split_data(data, val_size=0.1, test_size=0.1):
        """
        splits data to training, validation and testing parts
        """
        ntest = int(round(len(data) * (1 - test_size)))
        nval = int(round(len(data.iloc[:ntest]) * (1 - val_size)))
        df_train, df_val, df_test = data.iloc[:nval], data.iloc[nval:ntest], data.iloc[ntest:]
        return df_train, df_val, df_test
    def prepare_data(data, time_steps, labels=False, val_size=0.1, test_size=0.1):
        """
        Given the number of `time_steps` and some data.
        prepares training, validation and test data for an lstm cell.
        """
        df_train, df_val, df_test = split_data(data, val_size, test_size)
        return (rnn_data(df_train, time_steps, labels=labels),
                rnn_data(df_val, time_steps, labels=labels),
                rnn_data(df_test, time_steps, labels=labels))
    def generate_data(fct, x, time_steps, seperate=False):
        """generate data with based on a function fct"""
        data = fct(x)
        if not isinstance(data, pd.DataFrame):
            data = pd.DataFrame(data)
        train_x, val_x, test_x = prepare_data(data['a'] if seperate else data, time_steps)
        train_y, val_y, test_y = prepare_data(data['b'] if seperate else data, time_steps, labels=True)
        return dict(train=train_x, val=val_x, test=test_x), dict(train=train_y, val=val_y, test=test
    

    这将会创建一个数据让模型可以查找过去time_steps步来预测数据。比如,LSTM模型的第一个cell是10 time_steps cell,为了做预测我们需要输入10个历史数据点。y值跟我们想预测的第十个值相关。 
    现在创建一个基于LSTM模型的回归量。

    regressor = skflow.TensorFlowEstimator(model_fn=lstm_model(TIMESTEPS, RNN_LAYERS, DENSE_LAYERS),
                                           n_classes=0,
                                           verbose=1,  
                                           steps=TRAINING_STEPS,
                                           optimizer='Adagrad',
                                           learning_rate=0.03,
                                           batch_size=BATCH_SIZE)
    

    预测sin函数

    X, y = generate_data(np.sin, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
    # create a lstm instance and validation monitor
    validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
                                                           print_steps=PRINT_STEPS,
                                                           early_stopping_rounds=1000,
                                                           logdir=LOG_DIR)
    regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
    # > last training steps
    # Step #9700, epoch #119, avg. train loss: 0.00082, avg. val loss: 0.00084
    # Step #9800, epoch #120, avg. train loss: 0.00083, avg. val loss: 0.00082
    # Step #9900, epoch #122, avg. train loss: 0.00082, avg. val loss: 0.00082
    # Step #10000, epoch #123, avg. train loss: 0.00081, avg. val loss: 0.00081
    

    预测测试数据

    mse = mean_squared_error(regressor.predict(X['test']), y['test'])
    print ("Error: {}".format(mse))
    # 0.000776
    

    真实sin函数

    预测sin函数

    预测sin和cos混合函数

    def sin_cos(x):
        return pd.DataFrame(dict(a=np.sin(x), b=np.cos(x)), index=x)
    X, y = generate_data(sin_cos, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
    # create a lstm instance and validation monitor
    validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
                                                           print_steps=PRINT_STEPS,
                                                           early_stopping_rounds=1000,
                                                           logdir=LOG_DIR)
    regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
    # > last training steps
    # Step #9500, epoch #117, avg. train loss: 0.00120, avg. val loss: 0.00118
    # Step #9600, epoch #118, avg. train loss: 0.00121, avg. val loss: 0.00118
    # Step #9700, epoch #119, avg. train loss: 0.00118, avg. val loss: 0.00118
    # Step #9800, epoch #120, avg. train loss: 0.00118, avg. val loss: 0.00116
    # Step #9900, epoch #122, avg. train loss: 0.00118, avg. val loss: 0.00115
    # Step #10000, epoch #123, avg. train loss: 0.00117, avg. val loss: 0.00115
    

    预测测试数据

    mse = mean_squared_error(regressor.predict(X['test']), y['test'])
    print ("Error: {}".format(mse))
    # 0.001144
    

    真实的sin_cos函数

    预测的sin_cos函数

    预测x*sin函数
    def x_sin(x):
         return x * np.sin(x)
     X, y = generate_data(x_sin, np.linspace(0, 100, 10000), TIMESTEPS, seperate=False)
     # create a lstm instance and validation monitor
     validation_monitor = skflow.monitors.ValidationMonitor(X['val'], y['val'], n_classes=0,
                                                            print_steps=PRINT_STEPS,
                                                            early_stopping_rounds=1000,
                                                            logdir=LOG_DIR)
     regressor.fit(X['train'], y['train'], validation_monitor, logdir=LOG_DIR)
     # > last training steps
     # Step #32500, epoch #401, avg. train loss: 0.48248, avg. val loss: 15.98678
     # Step #33800, epoch #417, avg. train loss: 0.47391, avg. val loss: 15.92590
     # Step #35100, epoch #433, avg. train loss: 0.45570, avg. val loss: 15.77346
     # Step #36400, epoch #449, avg. train loss: 0.45853, avg. val loss: 15.61680
     # Step #37700, epoch #465, avg. train loss: 0.44212, avg. val loss: 15.48604
     # Step #39000, epoch #481, avg. train loss: 0.43224, avg. val loss: 15.43947
    

    预测测试数据

    mse = mean_squared_error(regressor.predict(X['test']), y['test'])
    print ("Error: {}".format(mse))
    # 61.024454351
    

    真实的x*sin函数

    预测的x*sin函数

  • 相关阅读:
    【BZOJ-4592】脑洞治疗仪 线段树
    【BZOJ-1369】Gem 树形DP
    【BZOJ-3696】化合物 树形DP + 母函数(什么鬼)
    【BZOJ-2435】道路修建 (树形DP?)DFS
    【BZOJ-4590】自动刷题机 二分 + 判定
    【BZOJ-4591】超能粒子炮·改 数论 + 组合数 + Lucas定理
    【BZOJ-1492】货币兑换Cash DP + 斜率优化 + CDQ分治
    【BZOJ-1324】Exca王者之剑 最小割
    【BZOJ-1017】魔兽地图DotR 树形DP + 背包
    【BZOJ-1131】Sta 树形DP
  • 原文地址:https://www.cnblogs.com/mfryf/p/7874691.html
Copyright © 2011-2022 走看看