zoukankan      html  css  js  c++  java
  • HDU5293 树链剖分+树形DP

    =-=抓住叶节点往上揪

    Tree chain problem

    Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1752    Accepted Submission(s): 561


    Problem Description
    Coco has a tree, whose vertices are conveniently labeled by 1,2,…,n.
    There are m chain on the tree, Each chain has a certain weight. Coco would like to pick out some chains any two of which do not share common vertices.
    Find out the maximum sum of the weight Coco can pick
     
    Input
    The input consists of several test cases. The first line of input gives the number of test cases T (T<=10).
    For each tests:
    First line two positive integers n, m.(1<=n,m<=100000)
    The following (n - 1) lines contain 2 integers ai bi denoting an edge between vertices ai and bi (1≤ai,bi≤n),
    Next m lines each three numbers u, v and val(1≤u,v≤n,0<val<1000), represent the two end points and the weight of a tree chain.
     
    Output
    For each tests:
    A single integer, the maximum number of paths.
     
    Sample Input
    1 7 3 1 2 1 3 2 4 2 5 3 6 3 7 2 3 4 4 5 3 6 7 3
     
    Sample Output
    6
    Hint
    Stack expansion program: #pragma comment(linker, "/STACK:1024000000,1024000000")

    #pragma comment(linker, "/STACK:1024000000,1024000000")
    #include<cstdio>
    #include<cstring>
    #include<vector>
    #include<algorithm>
    using namespace std;
    const int maxn=1e5+88;
    int fa[maxn],dep[maxn],size[maxn],pos[maxn],bl[maxn],head[maxn];
    int sum[maxn];
    int dp[maxn],su[maxn],n,m;
    vector<int>G[maxn];
    struct node{
       int to,next;
    }edge[maxn<<1];
    struct cst{
       int x,y,z;
    }road[maxn];
    int tot,sz;
    void init(){
       tot=sz=0;
       memset(sum,0,sizeof(sum));
       memset(head,-1,sizeof(head));
       for(int i=1;i<=n;++i) G[i].clear();
    }
    void add(int u,int v) {
       edge[tot].to=v;
       edge[tot].next=head[u];
       head[u]=tot++;
    }
    void sadd(int u,int val) {
       for( ; u<=n;u+=u&(-u))
        sum[u]+=val;
    }
    int getsum(int u) {
        int ret=0;
       for(;u;u-=u&(-u))
        ret+=sum[u];
       return ret;
    }
    void dfs1(int x){
        size[x]=1;
        for(int i=head[x];i+1;i=edge[i].next){
            int v=edge[i].to;
            if(v==fa[x]) continue;
            fa[v]=x;
            dep[v]=dep[x]+1;
            dfs1(v);
            size[v]+=size[x];
        }
    }
    void dfs2(int x,int chain)
    {
        bl[x]=chain;
        pos[x]=++sz;
        int k=0;
        for(int i=head[x];i+1;i=edge[i].next){
            int v=edge[i].to;
            if(dep[v]>dep[x]&&size[v]>size[k])
                k=v;
        }
        if(!k) return;
        dfs2(k,chain);
        for(int i=head[x];i+1;i=edge[i].next)
            if(dep[edge[i].to]>dep[x]&&edge[i].to!=k)
            dfs2(edge[i].to,edge[i].to);
    }
    int LCA(int x,int y){
       while(bl[x]!=bl[y]) {
        if(dep[bl[x]]<dep[bl[y]]) swap(x,y);
        x=fa[bl[x]];
       }
       if(pos[x]>pos[y]) swap(x,y);
       return x;
    }
    int query(int x,int y){
        int ret=0;
       while(bl[x]!=bl[y]){
        if(dep[bl[x]]<dep[bl[y]]) swap(x,y);
        ret+=getsum(pos[x])-getsum(pos[bl[x]]-1);
        x=fa[bl[x]];
       }
       if(dep[x]>dep[y]) swap(x,y);
       ret+=getsum(pos[y])-getsum(pos[x]-1);
       return ret;
    }
    void solve(int u){
       su[u]=0;
       for(int i=head[u];i+1;i=edge[i].next){
        int v=edge[i].to;
        if(v==fa[u]) continue;
        solve(v);
        su[u]+=dp[v];
       }
       dp[u]=su[u];
       for(int i=0;i<(int)G[u].size();++i){
        int v=G[u][i];
        dp[u]=max(dp[u],query(road[v].x,road[v].y)+su[u]+road[v].z);
       }
       sadd(pos[u],su[u]-dp[u]);
    }
    int main(){
       int t,u,v;
       for(scanf("%d",&t);t--;){
        scanf("%d%d",&n,&m);
        init();
        for(int i=1;i<n;++i){
            scanf("%d%d",&u,&v);
            add(u,v);
            add(v,u);
        }
        dfs1(1);
        dfs2(1,1);
        for(int i=1;i<=m;++i)
        {
            scanf("%d%d%d",&road[i].x,&road[i].y,&road[i].z);
            G[LCA(road[i].x,road[i].y)].push_back(i);
        }
        solve(1);
        printf("%d ",dp[1]);
       }
    }

  • 相关阅读:
    codeforces 19B Checkout Assistant DP
    bzoj1053: [HAOI2007]反素数ant [搜索]
    【2017泉州基地校集训】雷神领域[二分图][并查集]
    bzoj1433: [ZJOI2009]假期的宿舍 [二分图][二分图最大匹配]
    bzoj 1059: [ZJOI2007]矩阵游戏 [二分图][二分图最大匹配]
    二分图带权匹配-Kuhn-Munkres算法模板 [二分图带权匹配]
    luogu P1332 血色先锋队[bfs]
    匈牙利算法dfs模板 [二分图][二分图最大匹配]
    【2017泉州基地校集训】最优排名[贪心]
    最大流Dinic算法的一些优化 [网络流][最大流]
  • 原文地址:https://www.cnblogs.com/mfys/p/7086592.html
Copyright © 2011-2022 走看看