zoukankan      html  css  js  c++  java
  • bzoj 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere

    Time Limit: 1 Sec  Memory Limit: 162 MB
    Submit: 2171  Solved: 1138
    [Submit][Status]

    Description

    有一个球形空间产生器能够在n维空间中产生一个坚硬的球体。现在,你被困在了这个n维球体中,你只知道球面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧毁这个球形空间产生器。

    Input

    第一行是一个整数,n。接下来的n+1行,每行有n个实数,表示球面上一点的n维坐标。每一个实数精确到小数点后6位,且其绝对值都不超过20000。

    Output

    有且只有一行,依次给出球心的n维坐标(n个实数),两个实数之间用一个空格隔开。每个实数精确到小数点后3位。数据保证有解。你的答案必须和标准输出一模一样才能够得分。

    Sample Input

    2
    0.0 0.0
    -1.0 1.0
    1.0 0.0

    Sample Output

    0.500 1.500

    HINT

    数据规模:

    对于40%的数据,1<=n<=3

    对于100%的数据,1<=n<=10

    提示:给出两个定义:

    1、 球心:到球面上任意一点距离都相等的点。

    2、 距离:设两个n为空间上的点A, B的坐标为(a1, a2, …, an), (b1, b2, …, bn),则AB的距离定义为:dist = sqrt( (a1-b1)^2 + (a2-b2)^2 + … + (an-bn)^2 )

    Source


    (a1-a)^2+(b1-b)^2+...+(z1-z)^2=(a2-a)^2+(b2-b)^2+...+(z2-z)^2

    --》

    2*(a2-a1)*a+2*(b2-b1)*b+...+2*(z2-z1)*z=a2^2+b2^2+...+z2^2-a1^2-a2^2-a3^2

    少见的大水题,两点要注意的,题目中“你的答案必须和标准输出一模一样才能够得分”暗示了行末不能有多余空格,判断非零不要将 if (abs(x)<eps)写成 if (x<eps)

    #include<iostream>
    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    #define MAXN 1000
    #define eps 1e-9
    #define abs(x) ((x)>0?(x):(-(x)))
    //(a1-a)^2+(b1-b)^2+...+(z1-z)^2=(a2-a)^2+(b2-b)^2+...+(z2-z)^2
    //2*(a2-a1)*a+2*(b2-b1)*b+...+2*(z2-z1)*z=a2^2+b2^2+...+z2^2-a1^2-a2^2-a3^2
    //AC
    double v[MAXN][MAXN];
    double map[MAXN][MAXN];
    int n;
    void pm()
    {
            int i,j;
            for (i=0;i<n;i++)
            {
                    for (j=0;j<=n;j++)
                    {
                            printf("%.4lf ",map[i][j]);
                    }
                    printf("
    ");
            }
    
    }
    double ans[MAXN];
    int main()
    {
            freopen("input.txt","r",stdin);
            int i,j,k,x,y,z,a,b,c;
            scanf("%d",&n);
            for (i=0;i<=n;i++)
            {
                    for (j=0;j<n;j++)
                    {
                            scanf("%lf",&v[i][j]);
                    }
            }
            double t=0;
            for (i=0;i<n;i++)
            {
                    t=0;
                    for (j=0;j<n;j++)
                    {
                            map[i][j]=2*(v[i+1][j]-v[i][j]);
                            t+=v[i+1][j]*v[i+1][j]-v[i][j]*v[i][j];
                    }
                    map[i][n]=t;
            }
    //        pm();
            for (i=0;i<n;i++)
            {
                    for (j=i;j<n;j++)
                    {
                            if (abs(map[j][i])>eps)
                            {
                                    break;
                            }
                    }
                    if (j!=i)
                    {
                            for (k=0;k<=n;k++)
                                    swap(map[i][k],map[j][k]);
                    }
                    for (j=i+1;j<n;j++)
                    {
                            t=map[j][i]/map[i][i];
                            for (k=i;k<=n;k++)
                            {
                                    map[j][k]-=t*map[i][k];
                            }
                    }
            }
    //        pm();
            for (i=n-1;i>=0;i--)
            {
                    t=map[i][n];
                    for (j=i+1;j<n;j++)
                    {
                            t-=map[i][j]*ans[j];
                    }
                    ans[i]=t/map[i][i];
            }
            for (i=0;i<n-1;i++)
            {
                    printf("%.3lf ",ans[i]);
            }
            printf("%.3lf
    ",ans[n-1]);
    }
    by mhy12345(http://www.cnblogs.com/mhy12345/) 未经允许请勿转载

    本博客已停用,新博客地址:http://mhy12345.xyz

  • 相关阅读:
    回溯算法
    cannot import name 'np' in mxnet
    Linux后台运行任务 nohup &
    为Windows Terminal添加右键菜单
    Outlook设置QQ邮箱
    逻辑回归 logistic regression
    Python添加自定义目录到sys.path
    强化学习 策略梯度
    为Windows terminal preview添加右键菜单
    双系统使用Linux引导
  • 原文地址:https://www.cnblogs.com/mhy12345/p/3864310.html
Copyright © 2011-2022 走看看