zoukankan      html  css  js  c++  java
  • TensorFlow实战1——TensorFlow实现Autoencoder

      1 #coding=utf-8
      2 import numpy as np
      3 import sklearn.preprocessing as prep
      4 import tensorflow as tf
      5 from tensorflow.examples.tutorials.mnist import input_data
      6 
      7 def xavier_init(fan_in,fan_out, constant = 1):
      8     '''Yoshua Bengio指出深度学习模型的权重初始化太小,那么信号将在每层传递缩小而失去作用;
      9     太大将导致发散.Xavier初始化器就是让权重被初始化得不大不小,正好合适。
     10     从数学的角度看,Xavier就是满足均值为:0,方差为2/(n_in+n_out)的均匀或高斯分布'''
     11     low = -constant*np.sqrt(6.0/(fan_in+fan_out))
     12     high = constant*np.sqrt(6.0/(fan_in+fan_out))
     13     return tf.random_uniform((fan_in,fan_out), minval=low, maxval=high,dtype = tf.float32)
     14 #去噪声自编码class
     15 class AdditiveGaussianNoiseAutoencoder(object):
     16 
     17     def __init__(self, n_input, n_hidden, transfer_function=tf.nn.softplus,
     18                  optimizer=tf.train.AdamOptimizer(), scale=0.1):
     19         ''' n_input:输入变量数
     20             n_hidden:隐含层节点数
     21             transfer_function:隐含层激活函数,默认为softplus
     22             optimizer:优化器,默认为Adam
     23             scale:高斯噪声系数,默认为0.1'''
     24         self.n_input = n_input
     25         self.n_hidden = n_hidden
     26         self.transfer = transfer_function
     27         self.scale = tf.placeholder(tf.float32)
     28         self.training_scale = scale
     29         #参数初始化使用_initialize_weights()
     30         network_weights = self._initialize_weights()
     31         self.weights = network_weights
     32 
     33         #输入x
     34         self.x = tf.placeholder(tf.float32,[None,self.n_input])
     35 
     36         '''隐藏层hidden,首先输入x加上噪声:self.x+scale*tf.random_normal((n_input,))
     37             然后tf.matmul上式与隐含层权重w1,
     38             tf.add加上隐含层biases:b1,
     39             最后使用self.transfer对结果进行激活函数处理'''
     40         self.hidden = self.transfer(tf.add(tf.matmul(
     41                         self.x+scale*tf.random_normal((n_input,)),
     42                         self.weights['w1']), self.weights['b1']))
     43         '''输出层重构:reconstruction,不用激活函数
     44         tf.matmul隐含层输出和输出层权重w2再加上输出层偏置b2'''
     45         self.reconstruction = tf.add(tf.matmul(self.hidden,
     46                         self.weights['w2']), self.weights['b2'])
     47 
     48         '''cost:直接使用平方误差即tf.substract计算输出self.reconstruction与self.x之差,
     49         再使用tf.pow求差的平方'''
     50         self.cost = 0.5*tf.reduce_sum(tf.pow(tf.subtract(
     51                             self.reconstruction, self.x), 2.0))
     52 
     53 
     54         self.optimizer = optimizer.minimize(self.cost)
     55 
     56         init = tf.global_variables_initializer()
     57         self.sess = tf.Session()
     58         self.sess.run(init)
     59 
     60     def _initialize_weights(self):
     61         all_weights = dict()
     62         '''w1使用xavier_init函数初始化,传入输入节点数和隐含层节点数,
     63         它将返回一个比较适合softplus激活函数的权重初始分布'''
     64         all_weights['w1'] = tf.Variable(xavier_init(self.n_input,
     65                                                     self.n_hidden))
     66         #b1,w2,b2使用tf.zeros全部为0
     67         all_weights['b1'] = tf.Variable(tf.zeros([self.n_hidden],
     68                                                   dtype = tf.float32))
     69 
     70         all_weights['w2'] = tf.Variable(tf.zeros([self.n_hidden,
     71                                                   self.n_input], dtype = tf.float32))
     72         all_weights['b2'] = tf.Variable(tf.zeros([self.n_input], dtype = tf.float32))
     73 
     74         return all_weights
     75 
     76     def partial_fit(self, X):
     77 
     78         '''trian每一个batch数据并返回当年batch的cost
     79         Session执行两个计算图的节点,cost和训练过程optimizer,
     80         输入的feed_dict:输入数据x和噪声系数:scale'''
     81 
     82         cost, opt = self.sess.run((self.cost, self.optimizer),
     83             feed_dict = {self.x:X, self.scale: self.training_scale})
     84 
     85         return cost
     86 
     87 
     88     def calc_total_cost(self, X):
     89         #计算cost
     90         return self.sess.run(self.cost, feed_dict = {self.x:X,
     91             self.scale:self.training_scale
     92         })
     93 
     94     def transform(self, X):
     95         #计算抽象的特征,返回隐含层的输出结果
     96         return self.sess.run(self.hidden, feed_dict = {self.x:X,
     97             self.scale:self.training_scale
     98         })
     99 
    100     def generate(self, hidden = None):
    101         #将高阶抽象特征复原为原始数据
    102         if hidden is None:
    103             hidden = bp.random_normal(size = self.weights['b1'])
    104 
    105         return self.sess.run(self.reconstruction, feed_dict = {self.hidden:hidden})
    106 
    107 
    108     def reconstruction(self, X):
    109         '''整体运行一遍复原过程,包括提取高阶特征和用高阶特征复原原始数据
    110         输入:原数据 输出:复原后的数据'''
    111         return self.sess.run(self.reconstruction, feed_dict = {self.x:X,
    112             self.scale:self.training_scale
    113         })
    114 
    115 
    116     def getWeights(self):
    117         #获取隐含层权重w1
    118         return self.sess.run(self.weights['w1'])
    119 
    120     def getBiases(self):
    121 
    122         #获取隐含层的偏置系数b1
    123         return self.sess.run(self.weights['b1'])
    124 
    125 mnist = input_data.read_data_sets('MNIST_data', one_hot = True)
    126 
    127 def standard_scale(X_train, X_test):
    128     '''对训练、测试data进行标准化处理(让数据变成均值为0,标准差为1的分布)'''
    129     preprocessor = prep.StandardScaler().fit(X_train)
    130     X_train = preprocessor.transform(X_train)
    131     X_test = preprocessor.transform(X_test)
    132     return X_train, X_test
    133 
    134 def get_random_block_from_data(data, batch_size):
    135     '''随机获取block数据:取一个0到len(data)-batch_size之间的随机整数
    136     再以这个随机数作为block的起始位置,然后顺序取batch_size的数据'''
    137     start_index = np.random.randint(0,len(data)-batch_size)
    138 
    139     return data[start_index:(start_index+batch_size)]
    140 
    141 X_train, X_test = standard_scale(mnist.train.images, mnist.test.images)
    142 
    143 n_samples = int(mnist.train.num_examples)
    144 training_epochs = 20
    145 batch_size = 128
    146 display_step = 1
    147 
    148 
    149 autoencoder = AdditiveGaussianNoiseAutoencoder(n_input = 784,
    150                 n_hidden = 200,
    151                 transfer_function = tf.nn.softplus,
    152                 optimizer = tf.train.AdamOptimizer(learning_rate = 0.001),
    153                 scale = 0.01
    154                 )
    155 
    156 for epoch in range(training_epochs):
    157 
    158     avg_cost = 0.
    159     total_batch = int(n_samples/batch_size)
    160 
    161     for i in range(total_batch):
    162         batch_xs =  get_random_block_from_data(X_train, batch_size)
    163 
    164 
    165         cost = autoencoder.partial_fit(batch_xs)
    166         avg_cost += cost/n_samples*batch_size
    167 
    168     if epoch%display_step == 0:
    169         print("Epoch:", '%04d'%(epoch+1), "cost = ",
    170                 "{:.9f}".format(avg_cost))
    171 
    172 print("Total cost:"+str(autoencoder.calc_total_cost(X_test)))
    Epoch: 0001 cost =  20001.253988636
    Epoch: 0002 cost =  12866.668271591
    Epoch: 0003 cost =  10933.510055682
    Epoch: 0004 cost =  9885.109014205
    Epoch: 0005 cost =  10337.800752273
    Epoch: 0006 cost =  9621.243082386
    Epoch: 0007 cost =  8365.464159659
    Epoch: 0008 cost =  8419.876629545
    Epoch: 0009 cost =  8918.941588636
    Epoch: 0010 cost =  8069.571899432
    Epoch: 0011 cost =  8420.874543182
    Epoch: 0012 cost =  8921.646592614
    Epoch: 0013 cost =  8175.836280682
    Epoch: 0014 cost =  7681.573177273
    Epoch: 0015 cost =  7809.688360227
    Epoch: 0016 cost =  8018.361381250
    Epoch: 0017 cost =  7809.863368750
    Epoch: 0018 cost =  8121.875443750
    Epoch: 0019 cost =  9078.917564773
    Epoch: 0020 cost =  8115.000298295
    Total cost:668358.0
  • 相关阅读:
    2031 HDOJ 进制转换
    计算机视觉实验之直方图均衡化和对数变换
    sublime text3创建文件时生成头部注释
    浏览器调试出错
    css世界-读书笔记
    redis中Bitmaps位图应用场景
    redis中hyperloglog基数统计
    redis中Zset有序集合类型常用命令
    redis中set集合类型常用命令
    redis中hash哈希类型常用命令
  • 原文地址:https://www.cnblogs.com/millerfu/p/8094797.html
Copyright © 2011-2022 走看看