zoukankan      html  css  js  c++  java
  • TensorFlow实战3——TensorFlow实现CNN

     1 from tensorflow.examples.tutorials.mnist import input_data
     2 import tensorflow as tf
     3 
     4 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
     5 sess = tf.InteractiveSession()
     6 
     7 def weight_variable(shape):
     8     '''初始化权重函数,truncated_normal创建标准差为0.2的截断正态函数'''
     9     initial = tf.truncated_normal(shape, stddev=0.1)
    10     return tf.Variable(initial)
    11 
    12 def bias_variable(shape):
    13     '''初始化偏置函数,由于使用ReLU要加一些正值0.1,避免死亡节点(dead neurons)'''
    14     initial = tf.constant(0.1, shape = shape)
    15     return tf.Variable(initial)
    16 
    17 def conv2d(x, W):
    18     '''x:输入 w:卷积参数 例[5, 5, 1, 32]:5, 5为卷积核尺寸
    19     1:为多少channel 彩色是3 灰度是1
    20     32:为卷积核的数量(这个卷积层会提取的多少类特征)
    21     strides:卷积模板移动的步长
    22     padding:代表边界处理方式,SAME即输入和输出保持同样尺寸'''
    23     return tf.nn.conv2d(x, W, strides = [1, 1, 1, 1], padding = 'SAME')
    24 
    25 def max_pool_2x2(x):
    26     '''池化层函数 max_pool:最大池化函数'''
    27     return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1],
    28                           padding='SAME')
    29 
    30 #x:特征
    31 x = tf.placeholder(tf.float32, [None, 784])
    32 #y_真实的label
    33 y_ = tf.placeholder(tf.float32, [None, 10])
    34 '''卷积神经网络会利用到原有的空间结构信息,因此需要将1D的输入向量转化为2D图片结构(1x784->28x28)
    35 因为只有一个颜色通道,故最终尺寸为[-1, 28, 28, 1]其中:-1代表样本数量不固定,1代表颜色通道数量'''
    36 x_image = tf.reshape(x, [-1, 28, 28, 1])
    37 
    38 '''先定义weights和bias,然后使用conv2d函数进行卷积操作并加上偏置,
    39 接着使用ReLU激活函数进行非线性处理,最好使用max_pool_2x2对卷积的输出结果进行池化操作'''
    40 w_conv1 = weight_variable([5, 5, 1, 32])
    41 b_conv1 = bias_variable([32])
    42 h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1)+b_conv1)
    43 h_pool1 = max_pool_2x2(h_conv1)
    44 
    45 #定义第二个卷积层,不同在于特征变为64
    46 w_conv2 = weight_variable([5, 5, 32, 64])
    47 b_conv2 = bias_variable([64])
    48 h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2)+b_conv2)
    49 h_pool2 = max_pool_2x2(h_conv2)
    50 
    51 '''经历两次2x2步长的最大池化,边长变为1/4,图片尺寸由28x28->7x7
    52 由于第二个卷积层的卷积核数量为64,其输出tensor尺寸为7x7x64。
    53 使用tf.reshape函数对其变形,转化为1D向量,然后连接一个全连接层,
    54 隐含节点为1024,并使用Relu激活函数'''
    55 w_fc1 = weight_variable([7*7*64, 1024])
    56 b_fc1 = bias_variable([1024])
    57 h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    58 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1)+b_fc1)
    59 
    60 #为减轻过拟合,使用一个dropout层
    61 keep_prob = tf.placeholder(tf.float32)
    62 h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    63 
    64 #dropout层输出连softmax层,得到最后的概率输出
    65 w_fc2 = weight_variable([1024, 10])
    66 b_fc2 = bias_variable([10])
    67 y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2)+b_fc2)
    68 
    69 cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y_conv),
    70                                               reduction_indices=[1]))
    71 
    72 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    73 
    74 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
    75 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    76 
    77 tf.global_variables_initializer().run()
    78 for i in range(20000):
    79     batch = mnist.train.next_batch(50)
    80     if i%100 == 0:
    81         train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
    82         print("step %d, train accuracy %g"%(i, train_accuracy))
    83 
    84     train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
    85 
    86 print("test accuracy%g"%accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
     1 step 0, train accuracy 0.22
     2 step 100, train accuracy 0.9
     3 step 200, train accuracy 0.88
     4 step 300, train accuracy 0.9
     5 step 400, train accuracy 0.96
     6 step 500, train accuracy 0.96
     7 step 600, train accuracy 0.98
     8 step 700, train accuracy 0.96
     9 step 800, train accuracy 0.98
    10 step 900, train accuracy 0.96
    11 step 1000, train accuracy 0.98
    12 step 18000, train accuracy 1
    13 step 18100, train accuracy 1
    14 step 18200, train accuracy 0.98
    15 step 18300, train accuracy 1
    16 step 18400, train accuracy 1
    17 step 18500, train accuracy 1
    18 step 18600, train accuracy 1
    19 step 18700, train accuracy 1
    20 step 18800, train accuracy 1
    21 step 18900, train accuracy 1
    22 step 19000, train accuracy 1
    23 step 19100, train accuracy 1
    24 step 19200, train accuracy 1
    25 step 19300, train accuracy 1
    26 step 19400, train accuracy 1
    27 step 19500, train accuracy 1
    28 step 19600, train accuracy 1
    29 step 19700, train accuracy 1
    30 step 19800, train accuracy 1
    31 step 19900, train accuracy 1
    32 step 20000, train accuracy 1
  • 相关阅读:
    常用验证函数isset()/empty()/is_numeric()函数
    jquery select取option的value值发生变化事件
    (转)浅谈HTML5与css3画饼图!
    文本框输入值文字消失常用的两种方法
    简洁的滚动代码(上下滚动)
    (转)PHP的语言结构和函数的区别
    兼容ie7的导航下拉菜单
    jquery中each()函数
    tomcat源码导入eclipse
    weblogic linux环境下新建domain
  • 原文地址:https://www.cnblogs.com/millerfu/p/8094825.html
Copyright © 2011-2022 走看看