1 from tensorflow.examples.tutorials.mnist import input_data 2 import tensorflow as tf 3 4 mnist = input_data.read_data_sets("MNIST_data/", one_hot=True) 5 sess = tf.InteractiveSession() 6 7 def weight_variable(shape): 8 '''初始化权重函数,truncated_normal创建标准差为0.2的截断正态函数''' 9 initial = tf.truncated_normal(shape, stddev=0.1) 10 return tf.Variable(initial) 11 12 def bias_variable(shape): 13 '''初始化偏置函数,由于使用ReLU要加一些正值0.1,避免死亡节点(dead neurons)''' 14 initial = tf.constant(0.1, shape = shape) 15 return tf.Variable(initial) 16 17 def conv2d(x, W): 18 '''x:输入 w:卷积参数 例[5, 5, 1, 32]:5, 5为卷积核尺寸 19 1:为多少channel 彩色是3 灰度是1 20 32:为卷积核的数量(这个卷积层会提取的多少类特征) 21 strides:卷积模板移动的步长 22 padding:代表边界处理方式,SAME即输入和输出保持同样尺寸''' 23 return tf.nn.conv2d(x, W, strides = [1, 1, 1, 1], padding = 'SAME') 24 25 def max_pool_2x2(x): 26 '''池化层函数 max_pool:最大池化函数''' 27 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], 28 padding='SAME') 29 30 #x:特征 31 x = tf.placeholder(tf.float32, [None, 784]) 32 #y_真实的label 33 y_ = tf.placeholder(tf.float32, [None, 10]) 34 '''卷积神经网络会利用到原有的空间结构信息,因此需要将1D的输入向量转化为2D图片结构(1x784->28x28) 35 因为只有一个颜色通道,故最终尺寸为[-1, 28, 28, 1]其中:-1代表样本数量不固定,1代表颜色通道数量''' 36 x_image = tf.reshape(x, [-1, 28, 28, 1]) 37 38 '''先定义weights和bias,然后使用conv2d函数进行卷积操作并加上偏置, 39 接着使用ReLU激活函数进行非线性处理,最好使用max_pool_2x2对卷积的输出结果进行池化操作''' 40 w_conv1 = weight_variable([5, 5, 1, 32]) 41 b_conv1 = bias_variable([32]) 42 h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1)+b_conv1) 43 h_pool1 = max_pool_2x2(h_conv1) 44 45 #定义第二个卷积层,不同在于特征变为64 46 w_conv2 = weight_variable([5, 5, 32, 64]) 47 b_conv2 = bias_variable([64]) 48 h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2)+b_conv2) 49 h_pool2 = max_pool_2x2(h_conv2) 50 51 '''经历两次2x2步长的最大池化,边长变为1/4,图片尺寸由28x28->7x7 52 由于第二个卷积层的卷积核数量为64,其输出tensor尺寸为7x7x64。 53 使用tf.reshape函数对其变形,转化为1D向量,然后连接一个全连接层, 54 隐含节点为1024,并使用Relu激活函数''' 55 w_fc1 = weight_variable([7*7*64, 1024]) 56 b_fc1 = bias_variable([1024]) 57 h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64]) 58 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1)+b_fc1) 59 60 #为减轻过拟合,使用一个dropout层 61 keep_prob = tf.placeholder(tf.float32) 62 h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 63 64 #dropout层输出连softmax层,得到最后的概率输出 65 w_fc2 = weight_variable([1024, 10]) 66 b_fc2 = bias_variable([10]) 67 y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2)+b_fc2) 68 69 cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_*tf.log(y_conv), 70 reduction_indices=[1])) 71 72 train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) 73 74 correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1)) 75 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 76 77 tf.global_variables_initializer().run() 78 for i in range(20000): 79 batch = mnist.train.next_batch(50) 80 if i%100 == 0: 81 train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0}) 82 print("step %d, train accuracy %g"%(i, train_accuracy)) 83 84 train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) 85 86 print("test accuracy%g"%accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
1 step 0, train accuracy 0.22 2 step 100, train accuracy 0.9 3 step 200, train accuracy 0.88 4 step 300, train accuracy 0.9 5 step 400, train accuracy 0.96 6 step 500, train accuracy 0.96 7 step 600, train accuracy 0.98 8 step 700, train accuracy 0.96 9 step 800, train accuracy 0.98 10 step 900, train accuracy 0.96 11 step 1000, train accuracy 0.98 12 step 18000, train accuracy 1 13 step 18100, train accuracy 1 14 step 18200, train accuracy 0.98 15 step 18300, train accuracy 1 16 step 18400, train accuracy 1 17 step 18500, train accuracy 1 18 step 18600, train accuracy 1 19 step 18700, train accuracy 1 20 step 18800, train accuracy 1 21 step 18900, train accuracy 1 22 step 19000, train accuracy 1 23 step 19100, train accuracy 1 24 step 19200, train accuracy 1 25 step 19300, train accuracy 1 26 step 19400, train accuracy 1 27 step 19500, train accuracy 1 28 step 19600, train accuracy 1 29 step 19700, train accuracy 1 30 step 19800, train accuracy 1 31 step 19900, train accuracy 1 32 step 20000, train accuracy 1