zoukankan      html  css  js  c++  java
  • Codeforces #123D: 后缀数组+单调栈

    D. String
     
     

    You are given a string s. Each pair of numbers l and r that fulfill the condition 1 ≤ l ≤ r ≤ |s|, correspond to a substring of the string s, starting in the position l and ending in the position r (inclusive).

    Let's define the function of two strings F(x, y) like this. We'll find a list of such pairs of numbers for which the corresponding substrings of string x are equal to string y. Let's sort this list of pairs according to the pair's first number's increasing. The value of function F(x, y)equals the number of non-empty continuous sequences in the list.

    For example: F(babbabbababbab, babb) = 6. The list of pairs is as follows:

    (1, 4), (4, 7), (9, 12)

    Its continuous sequences are:

    • (1, 4)
    • (4, 7)
    • (9, 12)
    • (1, 4), (4, 7)
    • (4, 7), (9, 12)
    • (1, 4), (4, 7), (9, 12)

    Your task is to calculate for the given string s the sum F(s, x) for all x, that x belongs to the set of all substrings of a string s.

    Input

    The only line contains the given string s, consisting only of small Latin letters (1 ≤ |s| ≤ 105).

    Output

    Print the single number — the sought sum.

    Please do not use the %lld specificator to read or write 64-bit integers in С++. It is preferred to use the cin, cout streams or the %I64d specificator.

    Examples
    input
    Copy
    aaaa
    output
    Copy
    20
    input
    Copy
    abcdef
    output
    Copy
    21
    input
    Copy
    abacabadabacaba
    output
    Copy
    188
    Note

    In the first sample the function values at x equal to "a", "aa", "aaa" and "aaaa" equal 10, 6, 3 and 1 correspondingly.

    In the second sample for any satisfying x the function value is 1.

    题意:如果某一种子串s在原串中出现了k次,根据题目定义的函数,它产生的贡献是(k+1)*k/2

    这个条件很奇怪,我们尝试转化模型,就会发现这个函数相当于我们将这k个s串排成一排,每个

    串和它自己以及后面的串匹配一次,总次数就是题目要求的函数

    于是我们可以上后缀数组+高度数组,对于每一个后缀,和后面的每一个后缀的算一个最长公共前缀,然后根据长度统计答案

    这个东西可以用单调栈搞一搞,最后每个后缀和自己可以匹配一次,也就是说如果读入的串长度为n,ans+=(n+1)*n/2

    代码:

      1 //#include"bits/stdc++.h"
      2 #include"cstdio"
      3 #include"map"
      4 #include"set"
      5 #include"cmath"
      6 #include"queue"
      7 #include"vector"
      8 #include"string"
      9 #include"ctime"
     10 #include"stack"
     11 #include"deque"
     12 #include"cstdlib"
     13 #include"cstring"
     14 #include"iostream"
     15 #include"algorithm"
     16 
     17 #define db double
     18 #define ll long long
     19 #define vec vector<ll>
     20 #define Mt  vector<vec>
     21 #define ci(x) scanf("%d",&x)
     22 #define cd(x) scanf("%lf",&x)
     23 #define cl(x) scanf("%lld",&x)
     24 #define pi(x) printf("%d
    ",x)
     25 #define pd(x) printf("%f
    ",x)
     26 #define pl(x) printf("%lld
    ",x)
     27 //#define rep(i, x, y) for(int i=x;i<y;i++)
     28 #define rep(i, n) for(int i=0;i<n;i++)
     29 using namespace std;
     30 const int N   = 1e6 + 5;
     31 const int mod = 1e9 + 7;
     32 const int MOD = mod - 1;
     33 const int inf = 0x3f3f3f3f;
     34 const db  PI  = acos(-1.0);
     35 const db  eps = 1e-10;
     36 int sa[N];
     37 int rk[N];
     38 int tmp[N];
     39 int lcp[N];
     40 int n,k;
     41 bool cmp(int i,int j){
     42     if(rk[i] != rk[j]) return rk[i]<rk[j];
     43     else
     44     {
     45         int ri=i+k<=n?rk[i+k]:-1;
     46         int rj=j+k<=n?rk[j+k]:-1;
     47         return ri<rj;
     48     }
     49 }
     50 void bulid(string s,int *sa)
     51 {
     52     n=(int)s.size();
     53     for(int i=0;i<=n;i++){
     54         sa[i]=i;
     55         rk[i]=i<n?s[i]:-1;
     56     }
     57     for(k=1;k<=n;k*=2){
     58         sort(sa,sa+n+1,cmp);
     59         tmp[sa[0]]=0;
     60         for(int i=1;i<=n;i++){
     61             tmp[sa[i]]=tmp[sa[i-1]]+(cmp(sa[i-1],sa[i])?1:0);
     62         }
     63         for(int i=0;i<=n;i++){
     64             rk[i]=tmp[i];
     65         }
     66     }
     67 }
     68 void LCP(string s,int *sa,int *lcp){
     69     n=(int)s.size();
     70     for(int i=0;i<=n;i++) rk[sa[i]]=i;
     71     int h=0;
     72     lcp[0]=0;
     73     for(int i=0;i<n;i++){
     74         int j=sa[rk[i]-1];
     75         for (h ? h-- : 0; j + h < n&&i + h < n&&s[j + h] == s[i + h]; h++);
     76         lcp[rk[i]-1] = h;
     77     }
     78 }
     79 #define x first
     80 #define y second
     81 #define Pair pair<int,int>
     82 #define mp make_pair
     83 
     84 stack<Pair> sta;
     85 int main ()
     86 {
     87     string s;
     88     cin>>s;
     89     n=s.length();
     90     bulid(s,sa);
     91     LCP(s,sa,lcp);
     92     ll ans=(ll)n*(ll)(n+1)/2;
     93     ll cnt=0;
     94     for (int i=0;i<=n;i++)
     95     {
     96         Pair ins=mp(lcp[i],1);//贡献为lcp[i]*num
     97         while (!sta.empty() && sta.top().x>ins.x)
     98         {
     99             cnt-=(ll)sta.top().x*sta.top().y;
    100             ins.y+=sta.top().y;
    101             sta.pop();
    102         }
    103         cnt+=(ll)ins.x*ins.y;
    104         sta.push(ins);
    105         ans+=cnt;
    106     }
    107     cout<<ans<<endl;
    108     return 0;
    109 }
  • 相关阅读:
    17字符串函数
    16数学函数
    计算文件的相对路径
    PHP生成唯一ID的方法
    PHP高效产生m个n范围内的不重复随机数(m<=n)
    随机红包
    约瑟夫环问题
    求n以内的质数(质数的定义:在大于1的自然数中,除了1和它本身意外,无法被其他自然数整除的数)
    10个值得深思的_PHP_面试问题
    PHP中被忽略的性能优化利器:生成器
  • 原文地址:https://www.cnblogs.com/mj-liylho/p/9032904.html
Copyright © 2011-2022 走看看