zoukankan      html  css  js  c++  java
  • POJ2186 强连通分量+缩点

    Popular Cows
    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 40234   Accepted: 16388

    Description

    Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is 
    popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow. 

    Input

    * Line 1: Two space-separated integers, N and M 

    * Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular. 

    Output

    * Line 1: A single integer that is the number of cows who are considered popular by every other cow. 

    Sample Input

    3 3
    1 2
    2 1
    2 3
    

    Sample Output

    1
    

    Hint

    Cow 3 is the only cow of high popularity. 

    Source

     

    题意:强连通分量缩点图求出度为0的点。

    思路:首先图要连通,其次出度为零的强连通分量个数只能为1.

    代码:

     

      1 #include"bits/stdc++.h"
      2 
      3 #define db double
      4 #define ll long long
      5 #define vl vector<ll>
      6 #define ci(x) scanf("%d",&x)
      7 #define cd(x) scanf("%lf",&x)
      8 #define cl(x) scanf("%lld",&x)
      9 #define pi(x) printf("%d
    ",x)
     10 #define pd(x) printf("%f
    ",x)
     11 #define pl(x) printf("%lld
    ",x)
     12 #define rep(i, a, n) for (int i=a;i<n;i++)
     13 #define per(i, a, n) for (int i=n-1;i>=a;i--)
     14 #define fi first
     15 #define se second
     16 using namespace std;
     17 typedef pair<int, int> pii;
     18 const int N = 1e6 + 5;
     19 const int mod = 1e9 + 7;
     20 const int MOD = 998244353;
     21 const db PI = acos(-1.0);
     22 const db eps = 1e-10;
     23 const ll INF = 0x3fffffffffffffff;
     24 int n, m;
     25 int cnt, num, id;
     26 int head[N];
     27 bool ins[N];
     28 int out[N];
     29 int dfn[N], low[N];
     30 int beg[N];
     31 stack<int> s;
     32 struct P {int to, nxt;} e[N];
     33 
     34 void add(int u, int v) {
     35     e[cnt].to = v;
     36     e[cnt].nxt = head[u];
     37     head[u] = cnt++;
     38 }
     39 
     40 void tarjan(int u) {
     41     low[u] = dfn[u] = ++id;
     42     ins[u] = 1;
     43     s.push(u);
     44     for (int i = head[u]; ~i; i = e[i].nxt) {
     45         int v = e[i].to;
     46         if (!dfn[v]) tarjan(v), low[u] = min(low[u], low[v]);
     47         else if (ins[v]) low[u] = min(low[u], dfn[v]);
     48     }
     49     if (low[u] == dfn[u]) {
     50         int v;
     51         do {
     52             v = s.top();
     53             s.pop();
     54             ins[v] = 0;
     55             beg[v] = num;//缩点
     56         } while (u != v);
     57         num++;
     58     }
     59 }
     60 
     61 int fa[N];
     62 bool vis[N];
     63 
     64 int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); }
     65 void unio(int x, int y) {
     66     int xx = find(x), yy = find(y);
     67     if (xx != yy) fa[xx] = yy;
     68 }
     69 void init() {
     70     memset(head, -1, sizeof(head));
     71     memset(low, 0, sizeof(low));
     72     memset(dfn, 0, sizeof(dfn));
     73     memset(ins, 0, sizeof(ins));
     74     memset(out, 0, sizeof(out));
     75     memset(beg, 0, sizeof(beg));
     76     memset(vis,0, sizeof(vis));
     77     for (int i = 1; i <= n; i++) fa[i] = i;
     78     cnt = num = id = 0;
     79 }
     80 int main() {
     81     while (scanf("%d%d", &n, &m) == 2) {
     82         init();
     83         for (int i = 0; i < m; i++) {
     84             int x, y;
     85             ci(x), ci(y);
     86             add(x, y);
     87             unio(x, y);
     88         }
     89         for (int i = 1; i <= n; i++) if (!dfn[i]) tarjan(i);
     90         for (int i = 1; i <= n; i++) {
     91             for (int j = head[i]; ~j; j = e[j].nxt) {
     92                 int v = e[j].to;
     93                 if (beg[i] != beg[v]) out[beg[i]]++;
     94             }
     95         }
     96         int ok = 1;
     97         int x = find(1);
     98         for (int i = 1; i <= n; i++)//联通
     99             if (find(i) != x) {
    100                 ok = 0;
    101                 break;
    102             }
    103         int tmp = 0, cnt = 0;
    104         for (int i = 1; i <=n; i++) {//强连通分量个数
    105             if (!out[beg[i]]){
    106                 if(!vis[beg[i]]) vis[beg[i]]=1,cnt++;
    107                 tmp++;
    108             }
    109         }
    110         if (cnt==1&&ok==1) pi(tmp);
    111         else puts("0");
    112     }
    113     return 0;
    114 }

     

     

     
  • 相关阅读:
    sklearn学习笔记
    概率生成模型GAN
    机器学习的种类
    如何为React提交pull request
    webpack define Plugin
    Saas应用方法论12条
    React Ref 和 React forwardRef
    几个数组去重的方法
    级数笔记
    信号量及P/V操作
  • 原文地址:https://www.cnblogs.com/mj-liylho/p/9548298.html
Copyright © 2011-2022 走看看