zoukankan      html  css  js  c++  java
  • Codeforces 712E Memory and Casinos

    Description

    There are n casinos lined in a row. If Memory plays at casino (i), he has probability (p_{i}) to win and move to the casino on the right ((i + 1)) or exit the row (if (i = n)), and a probability (1 - p_{i}) to lose and move to the casino on the left ((i - 1)) or also exit the row (if (i = 1)).
    We say that Memory dominates on the interval (i dots j) if he completes a walk such that,
    (ullet)He starts on casino (i).
    (ullet)He never looses in casino (i).
    (ullet)He finishes his walk by winning in casino (j).
    Note that Memory can still walk left of the 1-st casino and right of the casino n and that always finishes the process
    Now Memory has some requests, in one of the following forms:
    (1 i a b): Set (p_{i} = frac{a}{b}).
    (2 l r): Print the probability that Memory will dominate on the interval (l dots r), i.e. compute the probability that Memory will first leave the segment (l dots r) after winning at casino (r), if she starts in casino (l).
    It is guaranteed that at any moment of time p is a non-decreasing sequence, i.e. (p_{i} le  p_{i + 1}) for all (i) from (1) to (n - 1).
    Please help Memory by answering all his requests!

    Input

    The first line of the input contains two integers (n) and (q(1  le  n, q le 100 000)), — number of casinos and number of requests respectively.
    The next n lines each contain integers (a_{i}) and (b_{i}) ((1 le a{i} < b_{i} le 10^{9})) — is the probability (p_{i}) of winning in casino (i).
    The next q lines each contain queries of one of the types specified above (1 ≤ a < b ≤ 109, 1 ≤ i ≤ n, 1 ≤ l ≤ r ≤ n).
    It's guaranteed that there will be at least one query of type (2), i.e. the output will be non-empty. Additionally, it is guaranteed that p forms a non-decreasing sequence at all times.

    Output

    Print a real number for every request of type (2) — the probability that boy will "dominate" on that interval. Your answer will be considered correct if its absolute error does not exceed (10^{-4}).
    Namely: let's assume that one of your answers is (a), and the corresponding answer of the jury is (b). The checker program will consider your answer correct if (mid a - b mid le  10^{ - 4}).

    Sample Input

    3 13
    1 3
    1 2
    2 3
    2 1 1
    2 1 2
    2 1 3
    2 2 2
    2 2 3
    2 3 3
    1 2 2 3
    2 1 1
    2 1 2
    2 1 3
    2 2 2
    2 2 3
    2 3 3

    Sample Output

    0.3333333333
    0.2000000000
    0.1666666667
    0.5000000000
    0.4000000000
    0.6666666667
    0.3333333333
    0.2500000000
    0.2222222222
    0.6666666667
    0.5714285714
    0.6666666667

    对于区间(l dots r),我们用(f)记录成功离开区间的概率,(g)记录从(r)出发最后到(r+1),没有离开过区间的概率。(f_{1},g_{1})(l dots mid)(f,g)值,(f_{2},g_{2})(mid+1 dots r)(f,g)值。合并方程:

    [f = f_{1}f_{2}+f_{1}(1-f_{2})g_{1}f_{2}+cdots=frac{f_{1}f_{2}}{1-(1-f_{2})g_{1}} ]

    [g = g_{2}+(1-g_{2})g_{1}f_{2}+(1-g_{2})g_{1}(1-f_{2})g_{1}f_{2}+cdots=g_{2}+frac{(1-g_{2})g_{1}f_{2}}{1-(1-g_{2})g_{1}} ]

    线段树维护下。

    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    using namespace std;
    
    typedef long double ld;
    #define maxn (400010)
    int N,Q,A[maxn],B[maxn],lef[maxn]; ld g[maxn],f[maxn];
    struct node { ld f,g; };
    
    inline int gi()
    {
    	int f = 1,ret = 0; char ch;
    	do ch = getchar(); while (!(ch >= '0'&&ch <= '9')&&ch != '-');
    	if (ch == '-') f = -1,ch = getchar();
    	do ret = ret*10+ch-'0',ch = getchar(); while (ch >= '0'&&ch <= '9');
    	return f*ret;
    }
    
    inline void build(int now,int l,int r)
    {
    	if (l == r) { lef[l] = now; g[now] = f[now] = (ld)A[l]/(ld)B[l]; return; }
    	int mid = (l+r)>>1;
    	build(now<<1,l,mid); build(now<<1|1,mid+1,r);
    	f[now] = (f[now<<1]*f[now<<1|1])/(1-g[now<<1]*(1-f[now<<1|1]));
    	g[now] = g[now<<1|1]+(1-g[now<<1|1])*g[now<<1]*f[now<<1|1]/(1+(f[now<<1|1]-1)*g[now<<1]);
    }
    
    inline node query(int now,int l,int r,int ql,int qr)
    {
    	if (l == ql&&r == qr) return (node){ f[now],g[now] };
    	int mid = (l+r)>>1;
    	if (qr <= mid) return query(now<<1,l,mid,ql,qr);
    	else if (ql > mid) return query(now<<1|1,mid+1,r,ql,qr);
    	else
    	{
    		node a,b,ret;
    		a = query(now<<1,l,mid,ql,mid); b = query(now<<1|1,mid+1,r,mid+1,qr);
    		ret.f = (a.f*b.f)/(1-a.g*(1-b.f));
    		ret.g = b.g+(1-b.g)*a.g*b.f/(1+(b.f-1)*a.g);
    		return ret;
    	}
    }
    
    int main()
    {
    	freopen("E.in","r",stdin);
    	freopen("E.out","w",stdout);
    	scanf("%d %d",&N,&Q);
    	for (int i = 1;i <= N;++i) A[i] = gi(),B[i] = gi();
    	build(1,1,N);
    	while (Q--)
    	{
    		int opt = gi();
    		if (opt == 1)
    		{
    			int now = lef[gi()],a = gi(),b = gi(); 
    			f[now] = g[now] = (ld)a/(ld)b;
    			for (now >>= 1;now;now >>= 1)
    			{
    				f[now] = (f[now<<1]*f[now<<1|1])/(1-g[now<<1]*(1-f[now<<1|1]));
    				g[now] = g[now<<1|1]+(1-g[now<<1|1])*g[now<<1]*f[now<<1|1]/(1+(f[now<<1|1]-1)*g[now<<1]);
    			}
    		}
    		else
    		{
    			int l = gi(),r = gi();
    			printf("%.10lf
    ",(double)query(1,1,N,l,r).f);
    		}
    	}
    	fclose(stdin); fclose(stdout);
    	return 0;
    }
    
  • 相关阅读:
    vue 中简单路由的实现
    Vue中对生命周期的理解
    内存泄漏
    前端工程化
    exports 和 module.exports 的区别
    Nodejs的url模块方法
    MongoDB 的获取和安装
    Anjular JS 的一些运用
    移动端vconsole调试
    安装fiddler时,电脑浏览器没网
  • 原文地址:https://www.cnblogs.com/mmlz/p/5874822.html
Copyright © 2011-2022 走看看