zoukankan      html  css  js  c++  java
  • 进程池----Pool(老的方式)----回调

    之后的进程池使用的是 ProcessPoolExecutor,它的底层使用的就是pool

    为什么要有进程池?进程池的概念。

    在程序实际处理问题过程中,忙时会有成千上万的任务需要被执行,闲时可能只有零星任务。那么在成千上万个任务需要被执行的时候,

    我们就需要去创建成千上万个进程么?首先,创建进程需要消耗时间,销毁进程也需要消耗时间。第二即便开启了成千上万的进程,

    操作系统也不能让他们同时执行,这样反而会影响程序的效率。因此我们不能无限制的根据任务开启或者结束进程。那么我们要怎么做呢?

    在这里,要给大家介绍一个进程池的概念,定义一个池子,在里面放上固定数量的进程,有需求来了,就拿一个池中的进程来处理任务,

    等到处理完毕,进程并不关闭,而是将进程再放回进程池中继续等待任务。如果有很多任务需要执行,池中的进程数量不够,

    任务就要等待之前的进程执行任务完毕归来,拿到空闲进程才能继续执行。也就是说,池中进程的数量是固定的,

    那么同一时间最多有固定数量的进程在运行。这样不会增加操作系统的调度难度,还节省了开闭进程的时间,也一定程度上能够实现并发效果。

    Pool([numprocess  [,initializer [, initargs]]]):创建进程池

    创建进程池的类:如果指定numprocess为3,则进程池会从无到有创建三个进程,然后自始至终使用这三个进程去执行所有任务,不会开启其他进程

    1 numprocess:要创建的进程数,如果省略,将默认使用cpu_count()的值
    2 initializer:是每个工作进程启动时要执行的可调用对象,默认为None
    3 initargs:是要传给initializer的参数组
    参数介绍
    p.apply(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。
    '''需要强调的是:此操作并不会在所有池工作进程中并执行func函数。如果要通过不同参数并发地执行func函数,必须从不同线程调用p.apply()函数或者使用p.apply_async()'''
    
    p.apply_async(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。
    '''此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传递给callback。callback禁止执行任何阻塞操作,否则将接收其他异步操作中的结果。'''
       
    p.close():关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成
    
    P.jion():等待所有工作进程退出。此方法只能在close()或teminate()之后调用
    主要方法
    方法apply_async()和map_async()的返回值是AsyncResul的实例obj。实例具有以下方法
    obj.get():返回结果,如果有必要则等待结果到达。timeout是可选的。如果在指定时间内还没有到达,将引发一场。如果远程操作中引发了异常,它将在调用此方法时再次被引发。
    obj.ready():如果调用完成,返回True
    obj.successful():如果调用完成且没有引发异常,返回True,如果在结果就绪之前调用此方法,引发异常
    obj.wait([timeout]):等待结果变为可用。
    obj.terminate():立即终止所有工作进程,同时不执行任何清理或结束任何挂起工作。如果p被垃圾回收,将自动调用此函数
    其他:了解

    简单使用

    import time
    from multiprocessing import Pool
    def fc(i):
        time.sleep(0.5)
        print('func%s'%i)
     
    if __name__ == '__main__':
        p = Pool(5)
        for i in range(5):
            p.apply(func=fc,args=(i,))  # 同步调用
    View Code

     同步调用apply

    import time
    import random
    import os
    from multiprocessing import Pool
    
    def work(n):
        print('%s run' %os.getpid())
        time.sleep(3)
        return n**2
    
    if __name__ == '__main__':
        p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
        res_l=[]
        for i in range(10):
            res=p.apply(work,args=(i,)) #同步调用,直到本次任务执行完毕拿到res,等待任务work执行的过程中可能有阻塞也可能没有阻塞,但不管该任务是否存在阻塞,同步调用都会在原地等着,只是等的过程中若是任务发生了阻塞就会被夺走cpu的执行权限
            res_l.append(res)
        print(res_l)
    
    '''
    8440 run
    17352 run
    7280 run
    8440 run
    17352 run
    7280 run
    8440 run
    17352 run
    7280 run
    8440 run
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    #这里面的结果每三个进程执行一次
    '''
    同步调用apply

    异步调用apply_async

    import os
    import time
    import random
    from multiprocessing import Pool
    
    def work(n):
        print('%s run' %os.getpid())
        time.sleep(random.random())
        return n**2
    
    if __name__ == '__main__':
        p=Pool(3) #进程池中从无到有创建三个进程,以后一直是这三个进程在执行任务
        res_l=[]
        for i in range(10):
            res=p.apply_async(work,args=(i,)) # 异步运行,根据进程池中有的进程数,每次最多3个子进程在异步执行
                                              # 返回结果之后,将结果放入列表,归还进程,之后再执行新的任务
                                              # 需要注意的是,进程池中的三个进程不会同时开启或者同时结束
                                              # 而是执行完一个就释放一个进程,这个进程就去接收新的任务。
            res_l.append(res)
    
        # 异步apply_async用法:如果使用异步提交的任务,主进程需要使用jion,等待进程池内任务都处理完,然后可以用get收集结果
        # 否则,主进程结束,进程池可能还没来得及执行,也就跟着一起结束了
        p.close()
        p.join()
        for res in res_l:
            print(res.get())
    
    '''
    992 run
    17040 run
    16152 run
    16152 run
    17040 run
    992 run
    992 run
    17040 run
    16152 run
    992 run
    0
    1
    4
    9
    16
    25
    36
    49
    64
    81
    '''
    View Code

     详解apply和apply_async

    1 apply

    from multiprocessing import Process,Pool
    import time
    def func(msg):
        print('msg:',msg)
        time.sleep(1)
        return msg
    if __name__ == '__main__':
        pool=Pool(processes=3)
        res_l=[]
        for i in range(10):
            msg='hello %d'%i
            res=pool.apply(func,(msg,))
            res_l.append(res)
        print('===================>')
        pool.close()
        pool.join()
        print(res_l)
        for i in res_l:
            print(i)
    '''
    msg: hello 0 #一条一条出现
    msg: hello 1
    msg: hello 2
    msg: hello 3
    msg: hello 4
    msg: hello 5
    msg: hello 6
    msg: hello 7
    msg: hello 8
    msg: hello 9
    ===================>
    ['hello 0', 'hello 1', 'hello 2', 'hello 3', 'hello 4', 'hello 5', 'hello 6', 'hello 7', 'hello 8', 'hello 9']
    hello 0
    hello 1
    hello 2
    hello 3
    hello 4
    hello 5
    hello 6
    hello 7
    hello 8
    hello 9
    '''
    View Code

    2 apply_async

    from multiprocessing import Process,Pool
    import time
    
    def func(msg):
        print( "msg:", msg)
        time.sleep(1)
        return msg
    
    if __name__ == "__main__":
        pool = Pool(processes = 3)
        res_l=[]
        for i in range(10):
            msg = "hello %d" %(i)
            res=pool.apply_async(func, (msg, ))   #维持执行的进程总数为processes,当一个进程执行完毕后会添加新的进程进去
            res_l.append(res)
        print("==============================>") #没有后面的join,或get,则程序整体结束,进程池中的任务还没来得及全部执行完也都跟着主进程一起结束了
    
        pool.close() #关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成
        pool.join()   #调用join之前,先调用close函数,否则会出错。执行完close后不会有新的进程加入到pool,join函数等待所有子进程结束
    
        print(res_l) #看到的是<multiprocessing.pool.ApplyResult object at 0x10357c4e0>对象组成的列表,而非最终的结果,但这一步是在join后执行的,证明结果已经计算完毕,剩下的事情就是调用每个对象下的get方法去获取结果
        for i in res_l:
            print(i.get()) #使用get来获取apply_aync的结果,如果是apply,则没有get方法,因为apply是同步执行,立刻获取结果,也根本无需get
    
    '''
    ==============================>
    msg: hello 0 #三条三条出现
    msg: hello 1
    msg: hello 2
    msg: hello 3
    msg: hello 4
    msg: hello 5
    msg: hello 6
    msg: hello 7
    msg: hello 8
    msg: hello 9
    [<multiprocessing.pool.ApplyResult object at 0x000001E1EEA8B9E8>, <multiprocessing.pool.ApplyResult object at 0x000001E1EEA8BAC8>, <multiprocessing.pool.ApplyResult object at 0x000001E1EEA8BBA8>, <multiprocessing.pool.ApplyResult object at 0x000001E1EEA8BC88>, <multiprocessing.pool.ApplyResult object at 0x000001E1EEA8BD68>, <multiprocessing.pool.ApplyResult object at 0x000001E1EEA8BE80>, <multiprocessing.pool.ApplyResult object at 0x000001E1EEA8BF98>, <multiprocessing.pool.ApplyResult object at 0x000001E1EEA9B0F0>, <multiprocessing.pool.ApplyResult object at 0x000001E1EEA9B208>, <multiprocessing.pool.ApplyResult object at 0x000001E1EEA9B320>]
    hello 0 #必须使用get取值
    hello 1
    hello 2
    hello 3
    hello 4
    hello 5
    hello 6
    hello 7
    hello 8
    hello 9
    '''
    View Code

     练习:使用进程池维护固定数目的进程

    #Pool内的进程数默认是cpu核数,假设为4(查看方法os.cpu_count())
    #开启6个客户端,会发现2个客户端处于等待状态
    #在每个进程内查看pid,会发现pid使用为4个,即多个客户端公用4个进程
    from socket import *
    from multiprocessing import Pool
    import os
    
    server=socket(AF_INET,SOCK_STREAM)
    server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
    server.bind(('127.0.0.1',8080))
    server.listen(5)
    
    def talk(conn,client_addr):
        print('进程pid: %s' %os.getpid())
        while True:
            try:
                msg=conn.recv(1024)
                if not msg:break
                conn.send(msg.upper())
            except Exception:
                break
    
    if __name__ == '__main__':
        p=Pool() #默认为cpu的核数,根据自己计算机情况来定
        while True:
            conn,client_addr=server.accept()
            p.apply_async(talk,args=(conn,client_addr))
            # p.apply(talk,args=(conn,client_addr)) #同步的话,则同一时间只有一个客户端能访问
    
    它们始终都是在进程池中随机挑选一个进程响应客户端
    服务端
    from socket import *
    
    client=socket(AF_INET,SOCK_STREAM)
    client.connect(('127.0.0.1',8080))
    
    
    while True:
        msg=input('>>: ').strip()
        if not msg:continue
    
        client.send(msg.encode('utf-8'))
        msg=client.recv(1024)
        print(msg.decode('utf-8'))
    客户端

    发现:并发开启多个客户端,服务端同一时间只有3个不同的pid,干掉一个客户端,另外一个客户端才会进来,被3个进程之一处理

    回调函数

    需要回调函数的场景:进程池中任何一个任务一旦处理完了,就立即告知主进程:我好了额,你可以处理我的结果了。主进程则调用一个函数去处理该结果,该函数即回调函数
    
    我们可以把耗时间(阻塞)的任务放到进程池中,然后指定回调函数(主进程负责执行),这样主进程在执行回调函数时就省去了I/O的过程,直接拿到的是任务的结果。

    进程池的数量一般为CPU的个数加1

    下面来看一个例子

    import os
    from urllib.request import urlopen
    from multiprocessing import Pool
     
    def get_url(url):
        print('-->',url,os.getpid(),'get_url进程')
        ret = urlopen(url)  # 打开url
        content = ret.read()  # 读取网页内容
        return url
     
    def call(url):  # 回调函数
        #分析
        print(url,os.getpid(),'回调函数')
     
    if __name__ == '__main__':
        print(os.getpid(),'主进程')  # 主进程id
        l = [
            'http://www.baidu.com',
            'http://www.sina.com',
            'http://www.sohu.com',
            'http://www.sogou.com',
            'http://www.qq.com',
            'http://www.bilibili.com',
        ]
        p = Pool(5)
        ret_l = []
        for url in l:
            ret = p.apply_async(func=get_url,args=[url,],callback=call)  # 异步
            ret_l.append(ret)  # 将进程追加到列表中
        for ret in ret_l:ret.get()  # 获取进程返回值
    View Code

    上面的args=[url,]可以换成()

    结果:

    '''
    15652 主进程
    ---> http://www.baidu.com 11672 get_url进程
    ---> http://www.sina.com 8968 get_url进程
    ---> http://www.sohu.com 17764 get_url进程
    ---> http://www.sogou.com 5852 get_url进程
    ---> http://www.qq.com 3260 get_url进程
    ---> http://www.bilibili.com 11672 get_url进程 #由于进程池数量为5,这个pid复用
    http://www.baidu.com 15652 回调函数 #下面的pid都是主进程的pid,证明回调函数是在主进程执行的
    http://www.sohu.com 15652 回调函数
    http://www.qq.com 15652 回调函数
    http://www.sogou.com 15652 回调函数
    http://www.bilibili.com 15652 回调函数
    http://www.sina.com 15652 回调函数
    #get_url函数中并没有打印,但是它的return结果传递给了call回调函数执行
    '''
    View Code

    结论:在进程池中,一个任务对应的函数在执行完毕之后,其返回值会自动作为参数返回给回调函数

    回调函数在主进程中执行的,回调函数是瞬间执行的,网络延时最占时长

    如果在主进程中等待进程池中所有任务都执行完毕后,再统一处理结果,则无需回调函数

    from multiprocessing import Pool
    import time,random,os
    
    def work(n):
        time.sleep(1)
        return n**2
    if __name__ == '__main__':
        p=Pool()
    
        res_l=[]
        for i in range(10):
            res=p.apply_async(work,args=(i,))
            res_l.append(res)
    
        p.close()
        p.join() #等待进程池中所有进程执行完毕
    
        nums=[]
        for res in res_l:
            nums.append(res.get()) #拿到所有结果
        print(nums) #主进程拿到所有的处理结果,可以在主进程中进行统一进行处理
    View Code
  • 相关阅读:
    Linux日志不记录问题
    Centos下yum安装PHP
    centos yum update kernel
    oh-my-zsh主题
    centos 6.6 使用tomcat6部署solr5.3.1
    Nginx manifest 实现 HTML5 Application Cache
    -bash: /bin/rm: Argument list too long
    linux mysql-5.6.26 安装
    LVM 管理减少swap分区空间增加到根分区
    Linux 使用iftop命令查看服务器流量
  • 原文地址:https://www.cnblogs.com/mmyy-blog/p/9429456.html
Copyright © 2011-2022 走看看