zoukankan      html  css  js  c++  java
  • OpenJudge/Poj 1159 Palindrome

    1.链接地址:

    http://bailian.openjudge.cn/practice/1159/

    http://poj.org/problem?id=1159

    2.题目:

    Palindrome
    Time Limit: 3000MS   Memory Limit: 65536K
    Total Submissions: 49849   Accepted: 17153

    Description

    A palindrome is a symmetrical string, that is, a string read identically from left to right as well as from right to left. You are to write a program which, given a string, determines the minimal number of characters to be inserted into the string in order to obtain a palindrome.

    As an example, by inserting 2 characters, the string "Ab3bd" can be transformed into a palindrome ("dAb3bAd" or "Adb3bdA"). However, inserting fewer than 2 characters does not produce a palindrome.

    Input

    Your program is to read from standard input. The first line contains one integer: the length of the input string N, 3 <= N <= 5000. The second line contains one string with length N. The string is formed from uppercase letters from 'A' to 'Z', lowercase letters from 'a' to 'z' and digits from '0' to '9'. Uppercase and lowercase letters are to be considered distinct.

    Output

    Your program is to write to standard output. The first line contains one integer, which is the desired minimal number.

    Sample Input

    5
    Ab3bd

    Sample Output

    2

    Source

    3.思路:

    这题要知道其实最少增加的个数= 字符串总字数 - LCS(最长公共子序列)

    所以就转化为求LCS

    LCS为典型的dp算法之一,时间复杂度O(n^2),空间复杂度O(n)

    !!!这题用string会超时,郁闷。开始对string没好感

    4.代码:

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 
     5 #define max(a,b) ((a) > (b) ? (a) : (b))
     6 
     7 using namespace std;
     8 
     9 
    10 int same(char ch1,char ch2)
    11 {
    12     if(ch1 == ch2) return 1;
    13     else return 0;
    14 }
    15 
    16 int LCS(char *str1,char *str2,int len1,int len2)
    17 {
    18     int i,j;
    19 
    20     //if(len1 < len2) {char *str3 = str1;str1 = str2;str2 = str3;}
    21 
    22     int **dp = new int*[2];
    23     for(i = 0; i < 2; ++i) dp[i] = new int[len2 + 1];
    24     memset(dp[0],0,sizeof(int) * (len2 + 1));
    25     dp[1][0] = 0;
    26 
    27     
    28     for(i = 1; i <= len1; ++i)
    29     {
    30         for(j = 1; j <= len2; ++j)
    31         {
    32             dp[i % 2][j] = max(dp[(i - 1) % 2][j],max(dp[i % 2][j - 1],dp[(i - 1) % 2][j - 1] + same(str1[i - 1],str2[j - 1])));
    33             //cout<<"dp[" << i << "][" << j << "]=" << dp[i % 2][j] << endl;
    34         }
    35     }
    36     int max = dp[len1 % 2][len2];
    37 
    38     for(i = 0; i < 2; ++i) delete [] dp[i];
    39     delete [] dp;
    40 
    41     return max;
    42 }
    43 
    44 int main()
    45 {
    46     int n;
    47     cin>>n;
    48 
    49     char *str1 = new char[n];
    50     char *str2 = new char[n];
    51 
    52     int i;
    53     for(i = 0; i < n; ++i)
    54     {
    55         cin>>str1[i];
    56         str2[n - 1 - i] = str1[i];
    57     }
    58 
    59     int lcs_len = LCS(str1,str2,n,n);
    60 
    61     cout<<(n - lcs_len)<<endl;
    62 
    63     delete [] str1;
    64     delete [] str2;
    65     return 0;
    66 }
  • 相关阅读:
    VC++中使用ADO方式操作ACCESS数据库
    运维工程师必会的109个Linux命令
    linux上安装配置samba服务器
    ubuntu如何实现访问实际网络中windows共享文件夹
    R语言 入门知识--常用操作和例子
    坚持你选择的路
    scala eclipse plugin 插件安装
    Linux安装卸载Mysql数据库
    Hadoop HA高可用性架构和演进分析(转)
    Spring 系列: Spring 框架简介 -7个部分
  • 原文地址:https://www.cnblogs.com/mobileliker/p/3551985.html
Copyright © 2011-2022 走看看