zoukankan      html  css  js  c++  java
  • Poj 2299 Ultra-QuickSort

    1.Link:

    http://poj.org/problem?id=2299

    2.Content:

    Ultra-QuickSort
    Time Limit: 7000MS   Memory Limit: 65536K
    Total Submissions: 41876   Accepted: 15208

    Description

    In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
    9 1 0 5 4 ,

    Ultra-QuickSort produces the output
    0 1 4 5 9 .

    Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.

    Input

    The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.

    Output

    For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.

    Sample Input

    5
    9
    1
    0
    5
    4
    3
    1
    2
    3
    0
    

    Sample Output

    6
    0
    

    Source

    3.Method:

    4.Code:

      1 #include<iostream>
      2 #include<stdio.h>
      3 using namespace std;
      4 int a[500002];
      5 
      6 //递归2路归并排序 
      7 /*void Merge(long long a[],long long b[],int s,int m,int t)
      8 {
      9      int i=s,j=m+1,k=s;
     10      while((i<=m)&&(j<=t))
     11      {
     12          if(a[i]<=a[j]) b[k++]=a[i++];  
     13          else b[k++]=a[j++];
     14      }
     15      while(i<=m) b[k++]=a[i++];
     16      while(j<=t) b[k++]=a[j++];
     17 }
     18 void MSort(long long a[],long long b[],int s,int t ,int size)
     19 {
     20      int m;
     21      long long c[size];
     22      if(s==t) b[s]=a[t];
     23      else
     24      {
     25          m=(s+t)/2;
     26          MSort(a,c,s,m,size);
     27          MSort(a,c,m+1,t,size);
     28          Merge(c,b,s,m,t);
     29      }
     30 }
     31 void MergeSort(long long a[],int size)
     32 {
     33      MSort(a,a,0,size-1,size);
     34 }*/
     35 
     36 
     37 // 非递归合并排序
     38 /*template<class T>
     39 void Merge(T a[],T b[],int s,int m,int t)
     40 {
     41       int i=s,j=m+1,k=s;
     42       while(i<=m&&j<=t)
     43       {
     44          if(a[i]<a[j]) b[k++]=a[i++];
     45          else b[k++]=a[j++];
     46       }
     47       while(i<=m) b[k++]=a[i++];
     48       while(j<=t) b[k++]=a[j++]; 
     49 }
     50 template<class T>
     51 void MergePass(T a[],T b[],int s,int t)
     52 {
     53       int i;
     54       for(i=0;i+2*s<=t;i=i+2*s)
     55       {
     56         Merge(a,b,i,i+s-1,i+2*s-1);
     57      }
     58      //剩下的元素个数少于2s
     59      if(i+s<t) Merge(a,b,i,i+s-1,t);
     60      else for(int j=i;j<=t;j++) b[j]=a[j]; 
     61 }
     62 template<class T>
     63 void MergeSort(T a[],int n)
     64 {
     65      T *b=new T[n];
     66      //T b[n];
     67      int s=1;
     68      while(s<n)
     69      {
     70          MergePass(a,b,s,n);
     71          s+=s;
     72          MergePass(b,a,s,n);
     73          s+=s;
     74      }
     75 }*/
     76 
     77 long long count=0;
     78 //求逆序对
     79 void Merge(int a[],int b[],int s,int m,int t)
     80 {
     81       int i=s,j=m+1,k=s;
     82      //int count=0;
     83       while(i<=m&&j<=t)
     84       {
     85          if(a[i]<=a[j]) b[k++]=a[i++];
     86          else
     87          {
     88              b[k++]=a[j++];
     89              count+=m-i+1;
     90          }
     91              
     92       }
     93       while(i<=m) b[k++]=a[i++];
     94       while(j<=t) b[k++]=a[j++];
     95       //return count;
     96 }
     97 void MergePass(int a[],int b[],int s,int t)
     98 {
     99       int i;
    100      //int count=0;
    101       for(i=0;i+2*s<=t;i=i+2*s)
    102       {
    103         Merge(a,b,i,i+s-1,i+2*s-1);
    104      }
    105      //剩下的元素个数少于2s
    106      if(i+s<t) Merge(a,b,i,i+s-1,t-1);
    107      else for(int j=i;j<=t;j++) b[j]=a[j]; 
    108      //return count;
    109 }
    110 void MergeSort(int a[],int n)
    111 {
    112      int *b=new int[n];
    113      //int b[n];
    114      //int count=0;
    115      int s=1;
    116      while(s<n)
    117      {
    118          MergePass(a,b,s,n);
    119          s+=s;
    120          MergePass(b,a,s,n);
    121          s+=s;
    122      }
    123 }
    124 
    125 
    126 
    127 int main()
    128 {
    129     
    130     //测试排序正确性 
    131     /*int a[10];
    132     for(i=0;i<10;i++) a[i]=10-i;
    133     for(i=0;i<10;i++) cout<<a[i]<<" ";
    134     cout<<endl;
    135     cout<<MergeSort(a,10)<<endl;
    136     for(i=0;i<10;i++) cout<<a[i]<<" ";*/
    137 
    138     int size;
    139     int i;
    140     while((cin>>size)&&size!=0)
    141     {
    142         count=0;
    143         for(i=0;i<size;i++)
    144         {
    145            scanf("%lld",&a[i]);
    146         }
    147         MergeSort(a,size);
    148         printf("%lld
    ",count);
    149         //测试排序正确性
    150         //for(i=0;i<size;i++) printf("%lld ",a[i]);
    151     }
    152     //system("pause");
    153     return 1;
    154 }

    5.Reference:

  • 相关阅读:
    matlab cell
    matlab linux 快捷键设置——有问题还是要解决
    latex 小结
    TOJ 1258 Very Simple Counting
    TOJ 2888 Pearls
    HDU 1248 寒冰王座
    TOJ 3486 Divisibility
    TOJ 3635 过山车
    TOJ 1840 Jack Straws
    HDU 4460 Friend Chains
  • 原文地址:https://www.cnblogs.com/mobileliker/p/3933425.html
Copyright © 2011-2022 走看看