KMP算法
对于KMP的讲解,我认为如何更好地理解和掌握 KMP 算法? - 阮行止的回答 - 知乎这篇回答的讲解已经非常细致了,没有必要对这种教程反复造轮子。这篇回答中只有对于next快速构建的一些部分不是很清晰。因此,下面一方面以笔记的性质记录我的理解,另一方面重述关于next构建的部分。
KMP的直觉过程
借用上面教程中的图进行一下说明。下面的图描述的是:从主串S中寻找模式串P的匹配过程。
KMP整个过程的核心是利用已有的信息,对失配后的模式串进行“修正”(这里非常像Manacher算法)。这里的“修正”是个很抽象的词。就像上面的图中,模式串的第一次匹配到最后一个字母‘d’时,发现了错误,即当前不能再匹配下去了,因此需要向后移位一格,再匹配。第二次匹配时第一个字母就错了,再移位一格。第三次第一个字母也不对,再移位一格。终于到了第四次,第一个字母能进行下去了,幸运的是第二个也能继续下去,之后就可以继续匹配第三个了。
这个过程可以发现一个特点,即对于主串来说,当前所指向的字符(即index_s)是不会往回走的,即一直是向后移动的。失配后需要重新调整的只有指向模式串的index_p。这在对KMP直觉的理解上是很重要的一点。
那么刚才提到的“修正”指的是什么?其实就是从某一次匹配出错,利用某些信息直接跳过“连第一个字母都匹配不上”的状态,进入一定可以继续匹配的过程。这个说法很不严谨,但是可以在一定程度上理解算法在做什么。
对于上面这个过程,之前提到的教程的描述如下:
有些趟字符串比较是有可能会成功的;有些则毫无可能。我们刚刚提到过,优化 Brute-Force 的路线是“尽量减少比较的趟数”,而如果我们跳过那些绝不可能成功的字符串比较,则可以希望复杂度降低到能接受的范围。
这个过程究竟利用了什么信息,我觉得可以按下面的思路捋一下:
- 模式串本身是蕴含一定信息的,比如第一个字母和第二个字母如果不一样,那么后移一位是一定没有意义的。
- 如果当前S和P刚刚失配,意味着在这个字符前面的所有字符是“匹配的”
- 如果存在2中的匹配,那么就把模式串本身的信息传递给了主串S
到这里,意思就很明确了。我们构建一个next,然后借用next中对前后缀的匹配关系,快速定位失配后的下一个index_p应该指向哪里。
就像下图:我们在匹配模式串的6和主串的6时出现了错误,那么这意味着主串和模式串的[0-5]是相同的。根据模式串自身携带的信息,我们知道模式串的[0-1]和[4-5]是相同的。根据前面匹配的特性,我们知道主串中的[0-1]和[4-5]也是相同的。因此下一次匹配时,我们可以让模式串的[0-1]和主串的[4-5]对齐,直接从主串的index_s = 6和模式串的index_p = 2开始比较,就可以继续了。值得注意的是,在从上次匹配到下次匹配的过程中,指向主串的index_s始终是没有变的,需要修正的,只有模式串的index_p。
前面所有过程都是出于从直觉上理解KMP在做什么,而其中的思路,为什么这么做,next信息是什么,为什么需要next信息,在前面大佬的回答如何更好地理解和掌握 KMP 算法? - 阮行止的回答 - 知乎中讲的非常清楚。
next的快速构建
这里还是借用大佬的例子(我觉得他举的例子很好)
当我们的p[x]和p[now]出现不匹配时,这里next[x]不能继续增加。因此需要把now回调才能继续匹配。
这里最重要的一点是,虽然p[x]和p[now]失配了,但是这意味着子串A和子串B是完全匹配的。
我们要调整now来重新寻找对应。而调整now实际上就是要找子串A的前缀和子串B的后缀到底能重合多少(最大重合数量)。因为子串A和子串B是完全匹配的,因此我们要找的就是子串A的前缀和子串A的后缀最大重合多少(相当于把子串B的后缀变成子串A的后缀,因为他俩完全匹配),而这个问题的答案,就是next[now - 1]。
如果明白了这个过程,再去看前面大佬的题解,那就很明晰了。
KMP的C++实现
#include <iostream>
#include <string>
#include <vector>
using namespace std;
// KMP类: 实现了KMP的主要功能:
// - 构建next串
// - 匹配
class KMP {
string s;
string pattern;
public:
KMP(const string &s, const string &pattern) : s(s), pattern(pattern) {}
// 构建next信息
vector<int> buildNext(const string &s) {
int n = s.size();
vector<int> next(n, 0);
int index = 1;
int now = 0;
while (index < n) {
if (s[index] == s[now]) {
next[index] = now;
++index;
++now;
} else if (now != 0) {
now = next[now - 1];
} else {
next[index] = 0;
++index;
}
}
return next;
}
// 寻找与匹配
bool find() {
auto next = buildNext(pattern);
int n = s.size();
int index_s = 0;
int index_p = 0;
// 输出当前任务的信息:
printInfo(next);
while (index_s < n) {
if (s[index_s] == pattern[index_p]) {
++index_p;
++index_s;
} else if (index_p != 0) {
index_p = next[index_p - 1];
} else {
++index_s;
}
if (index_p == pattern.size()) {
cout << "s[" << index_s - pattern.size() << ", " << index_s - 1
<< "] = pattern" << endl;
return true;
}
}
return false;
}
void printInfo(const vector<int> &next) {
cout << "s = " << s << endl;
cout << " ";
for (int i = 0; i < s.size(); ++i) {
cout << i % 10;
}
cout << endl;
cout << "pattern = " << pattern << endl;
cout << "next = ";
for (auto &x : next) {
cout << x;
}
cout << endl;
}
};
int main() {
// 简单验证
string s = "abcddddabcddabxcddddabxcddddxabx";
string pattern = "abxcddddxabx";
KMP k(s, pattern);
cout << k.find() << endl;
cout << endl;
string mode2 = "abxcddddxabxp";
KMP k2(s, mode2);
cout << k2.find() << endl;
cout << endl;
string s3 = "ababaabaabac";
string mode3 = "abaabac";
KMP k3(s3, mode3);
cout << k3.find() << endl;
return 0;
}