(sum_{i=1}^n;k;mod;i)
Solution
(sum_{i=1}^n;k;mod;i\=sum_{i=1}^n(k-ilfloor{frac{k}{i}} floor)\=k imes n-sum_{i=1}^nilfloor{frac{k}{i}} floor)
至于后面那项,整除分块即可
#include <bits/stdc++.h>
using namespace std;
#define int long long
signed main() {
int n,k,l=1,r,ans=0;
cin>>n>>k;
while(l<=min(n,k)) {
r=min(n,k/(k/l));
ans+=(l+r)*(r-l+1)*(k/l)/2;
l=r+1;
}
cout<<k*n-ans;
}