给定 (n) 个点,(m) 条边,以及两个点 (s,t),求点对 ((a,b)) 的个数,满足任意一条 (a o b) 路径都经过 (s,t)
Solution
从 (s) 开始 DFS,能不经过 (t) 到达的点的集合记为 (S)
从 (t) 开始 DFS,能不经过 (s) 到达的点的集合记为 (T)
答案即为 (|S/T||T/S|)
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1000005;
int n,m,s,t,S[N],T[N],a1,a2;
vector <int> g[N];
void dfs1(int p) {
S[p]=1;
for(int q:g[p]) if(S[q]==0&&q!=t) dfs1(q);
}
void dfs2(int p) {
T[p]=1;
for(int q:g[p]) if(T[q]==0&&q!=s) dfs2(q);
}
signed main() {
ios::sync_with_stdio(false);
int Tx;
cin>>Tx;
while(Tx--) {
cin>>n>>m>>s>>t;
for(int i=1;i<=m;i++) {
int t1,t2;
cin>>t1>>t2;
g[t1].push_back(t2);
g[t2].push_back(t1);
}
dfs1(s);
dfs2(t);
S[s]=0; S[t]=0;
T[t]=0; T[s]=0;
for(int i=1;i<=n;i++) if(S[i]&&!T[i]) ++a1;
for(int i=1;i<=n;i++) if(T[i]&&!S[i]) ++a2;
cout<<a1*a2<<endl;
for(int i=1;i<=n;i++) S[i]=T[i]=0;
for(int i=1;i<=n;i++) g[i].clear();
a1=a2=0;
}
}