给定一个长为 (n) 的序列 (a_1,...,a_n),有 (n) 个操作,包括区间开方下取整,区间求和
Solution
考虑到一个数开方 (log) 次后就会变成 (1),所以我们对每个区间记录一个值 mx
如果一个区间的 mx
不大于 (1),那么显然我们的区间开方操作就无需执行
否则,我们暴力对这个区间内的所有元素进行开方
由于每个区间最多会被暴力开方 (log V) 次,每个元素在区间开方时被暴力计算的次数不超过 (O(n log V))
总体时间复杂度 (O(n(sqrt n + log V)))
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 200005;
int n, len, mx[N], a[N], b[N], s[N];
signed main() {
ios::sync_with_stdio(false);
cin >> n;
len = ceil(sqrt(n));
for (int i = 1; i <= n; i++) cin >> a[i];
for (int i = 1; i <= n; i++) b[i] = (i - 1) / len + 1;
for (int i = 1; i <= n; i++) s[b[i]] += a[i], mx[b[i]] = max(mx[b[i]], a[i]);
for (int i = 1; i <= n; i++) {
int opt, l, r, c;
cin >> opt >> l >> r >> c;
if (!opt) {
if (b[l] == b[r]) {
for (int i = l; i <= r; i++) a[i] = sqrt(a[i]);
mx[b[l]] = 0;
s[b[l]] = 0;
for (int i = b[l] * len - len + 1; i <= b[l] * len; i++)
mx[b[i]] = max(mx[b[i]], a[i]), s[b[i]] += a[i];
} else {
for (int i = b[l] + 1; i < b[r]; i++) {
if (mx[i] > 1) {
mx[i] = 0;
s[i] = 0;
for (int j = i * len - len + 1; j <= i * len; j++)
a[j] = sqrt(a[j]), mx[i] = max(mx[i], a[j]), s[i] += a[j];
}
}
for (int i = l; i <= b[l] * len; i++) a[i] = sqrt(a[i]);
mx[b[l]] = 0;
s[b[l]] = 0;
for (int i = b[l] * len - len + 1; i <= b[l] * len; i++)
mx[b[i]] = max(mx[b[i]], a[i]), s[b[i]] += a[i];
for (int i = b[r] * len - len + 1; i <= r; i++) a[i] = sqrt(a[i]);
mx[b[r]] = 0;
s[b[r]] = 0;
for (int i = b[r] * len - len + 1; i <= b[r] * len; i++)
mx[b[i]] = max(mx[b[i]], a[i]), s[b[i]] += a[i];
}
} else {
int ans = 0;
if (b[l] == b[r]) {
for (int i = l; i <= r; i++) ans += a[i];
} else {
for (int i = b[l] + 1; i < b[r]; i++) ans += s[i];
for (int i = l; i <= b[l] * len; i++) ans += a[i];
for (int i = b[r] * len - len + 1; i <= r; i++) ans += a[i];
}
cout << ans << endl;
}
}
}