zoukankan      html  css  js  c++  java
  • [CF1389D] Segment Intersections

    Description

    (n) 对线段,初态下每对的第一条都是 ([l_1,r_1]),第二条都是 ([l_2,r_2])。定义总交集长度为每对线段的交集长度之和。可以花费代价 (1) 来延长一条线段,往左或往右延伸 (1) 个单位。求使得总交集长度到达 (k le 10^9) 的最小代价。

    Solution

    对于一对线段 ([l_1,r_1],[l_2,r_2]),称 ([min(l_1,r_1), max(l_2,r_2)]) 为这个线段对的边界线段。若 ([l_1,r_1] igcup [l_2,r_2] = [min(l_1,r_1), max(l_2,r_2)]),则称这个线段对是连续的。

    考虑一个线段对与它的边界线段之间的关系,显然线段对的实际长度和与它的边界线段的长度之间存在一个差值,如果相交则这个差值为正,相离则这个差值为负。

    将一个线段对通过最小的步数操作,使得它的并集等于它的边界线段,这个过程称为填满一个线段。

    我们暴力枚举要填满 (i) 个线段对,这时若我们只在这些被选择填满的线段对上操作就可以完成目标,花费的代价是 (k-id),其中 (d) 是上述的差值;否则,在 (k-id) 之外,我们还需要额外花费 (k-is) 的代价,其中 (s) 的边界线段的长度。判定是否需要后者的条件就是 (k-is) 是否为正。

    #include <bits/stdc++.h>
    using namespace std;
    
    #define int long long 
    
    signed main()
    {
        ios::sync_with_stdio(false);
        int t;
        cin>>t;
        while(t--)
        {
            int n,k,l1,l2,r1,r2,d,s,ans=1e18;
            cin>>n>>k>>l1>>r1>>l2>>r2;
            s=max(r1,r2)-min(l1,l2); 
            d=min(r1,r2)-max(l1,l2);  
            for(int i=1;i<=n;i++) ans=min(ans,k-i*d+max(0ll,k-i*s));
            cout<<max(0ll,ans)<<endl;
        }
    }
    
  • 相关阅读:
    WSAAsyncSelect模型的小i例子
    网络编程之Winsock2
    网络编程系列之Winsock
    网络编程系列之前言
    winpcap 编程及环境配置
    inno setup 一款强大的安装包制作工具
    创建windows服务程序
    python模块之logging
    ABOUT ME
    [省选联考 2020 A 卷] 树
  • 原文地址:https://www.cnblogs.com/mollnn/p/13928603.html
Copyright © 2011-2022 走看看