You are given an array a consisting of n integers a1, ..., an. In one operation, you can choose 2 elements ai and aj in which ai is divisible by aj and transform ai to aj.
A number x is said to be divisible by a number y if x can be divided by y and the result is an exact whole number. For example, 15 is divisible by 3, because 15÷ 3 = 5 exactly, but 9 is not divisible by 2 because 9÷ 2 is 4 with 1 left over.
Your task is to find the minimum sum of the array a that can be obtained by making as many transform operations as you want. Can you?
The first line contains an integer T (1 ≤ T ≤ 100) specifying the number of test cases.
The first line of each test case contains an integer n (1 ≤ n ≤ 105), in which n is the size of array a. Then a line follows containing n integers a1, ..., an (1 ≤ ai ≤ 106), giving array a.
The sum of n overall test cases does not exceed 3 × 106.
For each test case, print a single line containing the minimum sum of the array a that can be obtained after making as many transform operations as you want.
1
5
2 2 3 6 6
1 #include<cstdio> 2 #include<cstring> 3 #include<cmath> 4 #include<algorithm> 5 #include<stack> 6 #include<iostream> 7 #include<map> 8 typedef long long ll; 9 const int MAXN=1000+10; 10 const int INF=1e6; 11 using namespace std; 12 map<ll,ll>::iterator it; 13 ll dp[1000]; 14 ll l=0; 15 int main() 16 { 17 ll m,n,t,i; 18 //cout<<INF; 19 scanf("%lld",&t); 20 map<ll,ll>mp; 21 while(t--) 22 { 23 mp.clear(); 24 scanf("%lld",&m); 25 for(ll i=0; i<m; i++) 26 { 27 scanf("%lld",&n); 28 mp[n]++; 29 } 30 ll ans=0,flag=0; 31 for(it=mp.begin(); it!=mp.end(); it++) 32 { 33 ll k=it->first; 34 if(k==1) 35 { 36 flag=1; 37 break; 38 } 39 ll flag=0,ppq=0; 40 for(i=2;i*i<=k;i++) 41 { 42 if(k%i==0) 43 { 44 if(mp.count(i)) 45 { 46 mp[i]+=mp[k]; 47 it--; 48 mp.erase(k); 49 flag=1; 50 break; 51 } 52 else if(mp.count(k/i)) 53 { 54 ppq=k/i; 55 } 56 } 57 } 58 if(!flag) 59 { 60 if(ppq) 61 { 62 mp[ppq]+=mp[k]; 63 it--; 64 mp.erase(k); 65 } 66 } 67 } 68 if(flag) 69 printf("%lld ",m); 70 else 71 { 72 for(it=mp.begin(); it!=mp.end(); it++) 73 { 74 ans+=it->second*it->first; 75 } 76 cout<<ans<<endl; 77 } 78 } 79 return 0; 80 }