首先把Object类的源码贴上。 /* * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved. * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * */ package java.lang; /** * Class {@code Object} is the root of the class hierarchy. * Every class has {@code Object} as a superclass. All objects, * including arrays, implement the methods of this class. * * @author unascribed * @see java.lang.Class * @since JDK1.0 */ public class Object { private static native void registerNatives(); static { registerNatives(); } /** * Returns the runtime class of this {@code Object}. The returned * {@code Class} object is the object that is locked by {@code * static synchronized} methods of the represented class. * * <p><b>The actual result type is {@code Class<? extends |X|>} * where {@code |X|} is the erasure of the static type of the * expression on which {@code getClass} is called.</b> For * example, no cast is required in this code fragment:</p> * * <p> * {@code Number n = 0; }<br> * {@code Class<? extends Number> c = n.getClass(); } * </p> * * @return The {@code Class} object that represents the runtime * class of this object. * @see Class Literals, section 15.8.2 of * <cite>The Java™ Language Specification</cite>. */ public final native Class<?> getClass(); /** * Returns a hash code value for the object. This method is * supported for the benefit of hash tables such as those provided by * {@link java.util.HashMap}. * <p> * The general contract of {@code hashCode} is: * <ul> * <li>Whenever it is invoked on the same object more than once during * an execution of a Java application, the {@code hashCode} method * must consistently return the same integer, provided no information * used in {@code equals} comparisons on the object is modified. * This integer need not remain consistent from one execution of an * application to another execution of the same application. * <li>If two objects are equal according to the {@code equals(Object)} * method, then calling the {@code hashCode} method on each of * the two objects must produce the same integer result. * <li>It is <em>not</em> required that if two objects are unequal * according to the {@link java.lang.Object#equals(java.lang.Object)} * method, then calling the {@code hashCode} method on each of the * two objects must produce distinct integer results. However, the * programmer should be aware that producing distinct integer results * for unequal objects may improve the performance of hash tables. * </ul> * <p> * As much as is reasonably practical, the hashCode method defined by * class {@code Object} does return distinct integers for distinct * objects. (This is typically implemented by converting the internal * address of the object into an integer, but this implementation * technique is not required by the * Java<font size="-2"><sup>TM</sup></font> programming language.) * * @return a hash code value for this object. * @see java.lang.Object#equals(java.lang.Object) * @see java.lang.System#identityHashCode */ public native int hashCode(); /** * Indicates whether some other object is "equal to" this one. * <p> * The {@code equals} method implements an equivalence relation * on non-null object references: * <ul> * <li>It is <i>reflexive</i>: for any non-null reference value * {@code x}, {@code x.equals(x)} should return * {@code true}. * <li>It is <i>symmetric</i>: for any non-null reference values * {@code x} and {@code y}, {@code x.equals(y)} * should return {@code true} if and only if * {@code y.equals(x)} returns {@code true}. * <li>It is <i>transitive</i>: for any non-null reference values * {@code x}, {@code y}, and {@code z}, if * {@code x.equals(y)} returns {@code true} and * {@code y.equals(z)} returns {@code true}, then * {@code x.equals(z)} should return {@code true}. * <li>It is <i>consistent</i>: for any non-null reference values * {@code x} and {@code y}, multiple invocations of * {@code x.equals(y)} consistently return {@code true} * or consistently return {@code false}, provided no * information used in {@code equals} comparisons on the * objects is modified. * <li>For any non-null reference value {@code x}, * {@code x.equals(null)} should return {@code false}. * </ul> * <p> * The {@code equals} method for class {@code Object} implements * the most discriminating possible equivalence relation on objects; * that is, for any non-null reference values {@code x} and * {@code y}, this method returns {@code true} if and only * if {@code x} and {@code y} refer to the same object * ({@code x == y} has the value {@code true}). * <p> * Note that it is generally necessary to override the {@code hashCode} * method whenever this method is overridden, so as to maintain the * general contract for the {@code hashCode} method, which states * that equal objects must have equal hash codes. * * @param obj the reference object with which to compare. * @return {@code true} if this object is the same as the obj * argument; {@code false} otherwise. * @see #hashCode() * @see java.util.HashMap */ public boolean equals(Object obj) { return (this == obj); } /** * Creates and returns a copy of this object. The precise meaning * of "copy" may depend on the class of the object. The general * intent is that, for any object {@code x}, the expression: * <blockquote> * <pre> * x.clone() != x</pre></blockquote> * will be true, and that the expression: * <blockquote> * <pre> * x.clone().getClass() == x.getClass()</pre></blockquote> * will be {@code true}, but these are not absolute requirements. * While it is typically the case that: * <blockquote> * <pre> * x.clone().equals(x)</pre></blockquote> * will be {@code true}, this is not an absolute requirement. * <p> * By convention, the returned object should be obtained by calling * {@code super.clone}. If a class and all of its superclasses (except * {@code Object}) obey this convention, it will be the case that * {@code x.clone().getClass() == x.getClass()}. * <p> * By convention, the object returned by this method should be independent * of this object (which is being cloned). To achieve this independence, * it may be necessary to modify one or more fields of the object returned * by {@code super.clone} before returning it. Typically, this means * copying any mutable objects that comprise the internal "deep structure" * of the object being cloned and replacing the references to these * objects with references to the copies. If a class contains only * primitive fields or references to immutable objects, then it is usually * the case that no fields in the object returned by {@code super.clone} * need to be modified. * <p> * The method {@code clone} for class {@code Object} performs a * specific cloning operation. First, if the class of this object does * not implement the interface {@code Cloneable}, then a * {@code CloneNotSupportedException} is thrown. Note that all arrays * are considered to implement the interface {@code Cloneable} and that * the return type of the {@code clone} method of an array type {@code T[]} * is {@code T[]} where T is any reference or primitive type. * Otherwise, this method creates a new instance of the class of this * object and initializes all its fields with exactly the contents of * the corresponding fields of this object, as if by assignment; the * contents of the fields are not themselves cloned. Thus, this method * performs a "shallow copy" of this object, not a "deep copy" operation. * <p> * The class {@code Object} does not itself implement the interface * {@code Cloneable}, so calling the {@code clone} method on an object * whose class is {@code Object} will result in throwing an * exception at run time. * * @return a clone of this instance. * @exception CloneNotSupportedException if the object's class does not * support the {@code Cloneable} interface. Subclasses * that override the {@code clone} method can also * throw this exception to indicate that an instance cannot * be cloned. * @see java.lang.Cloneable */ protected native Object clone() throws CloneNotSupportedException; /** * Returns a string representation of the object. In general, the * {@code toString} method returns a string that * "textually represents" this object. The result should * be a concise but informative representation that is easy for a * person to read. * It is recommended that all subclasses override this method. * <p> * The {@code toString} method for class {@code Object} * returns a string consisting of the name of the class of which the * object is an instance, the at-sign character `{@code @}', and * the unsigned hexadecimal representation of the hash code of the * object. In other words, this method returns a string equal to the * value of: * <blockquote> * <pre> * getClass().getName() + '@' + Integer.toHexString(hashCode()) * </pre></blockquote> * * @return a string representation of the object. */ public String toString() { return getClass().getName() + "@" + Integer.toHexString(hashCode()); } /** * Wakes up a single thread that is waiting on this object's * monitor. If any threads are waiting on this object, one of them * is chosen to be awakened. The choice is arbitrary and occurs at * the discretion of the implementation. A thread waits on an object's * monitor by calling one of the {@code wait} methods. * <p> * The awakened thread will not be able to proceed until the current * thread relinquishes the lock on this object. The awakened thread will * compete in the usual manner with any other threads that might be * actively competing to synchronize on this object; for example, the * awakened thread enjoys no reliable privilege or disadvantage in being * the next thread to lock this object. * <p> * This method should only be called by a thread that is the owner * of this object's monitor. A thread becomes the owner of the * object's monitor in one of three ways: * <ul> * <li>By executing a synchronized instance method of that object. * <li>By executing the body of a {@code synchronized} statement * that synchronizes on the object. * <li>For objects of type {@code Class,} by executing a * synchronized static method of that class. * </ul> * <p> * Only one thread at a time can own an object's monitor. * * @exception IllegalMonitorStateException if the current thread is not * the owner of this object's monitor. * @see java.lang.Object#notifyAll() * @see java.lang.Object#wait() */ public final native void notify(); /** * Wakes up all threads that are waiting on this object's monitor. A * thread waits on an object's monitor by calling one of the * {@code wait} methods. * <p> * The awakened threads will not be able to proceed until the current * thread relinquishes the lock on this object. The awakened threads * will compete in the usual manner with any other threads that might * be actively competing to synchronize on this object; for example, * the awakened threads enjoy no reliable privilege or disadvantage in * being the next thread to lock this object. * <p> * This method should only be called by a thread that is the owner * of this object's monitor. See the {@code notify} method for a * description of the ways in which a thread can become the owner of * a monitor. * * @exception IllegalMonitorStateException if the current thread is not * the owner of this object's monitor. * @see java.lang.Object#notify() * @see java.lang.Object#wait() */ public final native void notifyAll(); /** * Causes the current thread to wait until either another thread invokes the * {@link java.lang.Object#notify()} method or the * {@link java.lang.Object#notifyAll()} method for this object, or a * specified amount of time has elapsed. * <p> * The current thread must own this object's monitor. * <p> * This method causes the current thread (call it <var>T</var>) to * place itself in the wait set for this object and then to relinquish * any and all synchronization claims on this object. Thread <var>T</var> * becomes disabled for thread scheduling purposes and lies dormant * until one of four things happens: * <ul> * <li>Some other thread invokes the {@code notify} method for this * object and thread <var>T</var> happens to be arbitrarily chosen as * the thread to be awakened. * <li>Some other thread invokes the {@code notifyAll} method for this * object. * <li>Some other thread {@linkplain Thread#interrupt() interrupts} * thread <var>T</var>. * <li>The specified amount of real time has elapsed, more or less. If * {@code timeout} is zero, however, then real time is not taken into * consideration and the thread simply waits until notified. * </ul> * The thread <var>T</var> is then removed from the wait set for this * object and re-enabled for thread scheduling. It then competes in the * usual manner with other threads for the right to synchronize on the * object; once it has gained control of the object, all its * synchronization claims on the object are restored to the status quo * ante - that is, to the situation as of the time that the {@code wait} * method was invoked. Thread <var>T</var> then returns from the * invocation of the {@code wait} method. Thus, on return from the * {@code wait} method, the synchronization state of the object and of * thread {@code T} is exactly as it was when the {@code wait} method * was invoked. * <p> * A thread can also wake up without being notified, interrupted, or * timing out, a so-called <i>spurious wakeup</i>. While this will rarely * occur in practice, applications must guard against it by testing for * the condition that should have caused the thread to be awakened, and * continuing to wait if the condition is not satisfied. In other words, * waits should always occur in loops, like this one: * <pre> * synchronized (obj) { * while (<condition does not hold>) * obj.wait(timeout); * ... // Perform action appropriate to condition * } * </pre> * (For more information on this topic, see Section 3.2.3 in Doug Lea's * "Concurrent Programming in Java (Second Edition)" (Addison-Wesley, * 2000), or Item 50 in Joshua Bloch's "Effective Java Programming * Language Guide" (Addison-Wesley, 2001). * * <p>If the current thread is {@linkplain java.lang.Thread#interrupt() * interrupted} by any thread before or while it is waiting, then an * {@code InterruptedException} is thrown. This exception is not * thrown until the lock status of this object has been restored as * described above. * * <p> * Note that the {@code wait} method, as it places the current thread * into the wait set for this object, unlocks only this object; any * other objects on which the current thread may be synchronized remain * locked while the thread waits. * <p> * This method should only be called by a thread that is the owner * of this object's monitor. See the {@code notify} method for a * description of the ways in which a thread can become the owner of * a monitor. * * @param timeout the maximum time to wait in milliseconds. * @exception IllegalArgumentException if the value of timeout is * negative. * @exception IllegalMonitorStateException if the current thread is not * the owner of the object's monitor. * @exception InterruptedException if any thread interrupted the * current thread before or while the current thread * was waiting for a notification. The <i>interrupted * status</i> of the current thread is cleared when * this exception is thrown. * @see java.lang.Object#notify() * @see java.lang.Object#notifyAll() */ public final native void wait(long timeout) throws InterruptedException; /** * Causes the current thread to wait until another thread invokes the * {@link java.lang.Object#notify()} method or the * {@link java.lang.Object#notifyAll()} method for this object, or * some other thread interrupts the current thread, or a certain * amount of real time has elapsed. * <p> * This method is similar to the {@code wait} method of one * argument, but it allows finer control over the amount of time to * wait for a notification before giving up. The amount of real time, * measured in nanoseconds, is given by: * <blockquote> * <pre> * 1000000*timeout+nanos</pre></blockquote> * <p> * In all other respects, this method does the same thing as the * method {@link #wait(long)} of one argument. In particular, * {@code wait(0, 0)} means the same thing as {@code wait(0)}. * <p> * The current thread must own this object's monitor. The thread * releases ownership of this monitor and waits until either of the * following two conditions has occurred: * <ul> * <li>Another thread notifies threads waiting on this object's monitor * to wake up either through a call to the {@code notify} method * or the {@code notifyAll} method. * <li>The timeout period, specified by {@code timeout} * milliseconds plus {@code nanos} nanoseconds arguments, has * elapsed. * </ul> * <p> * The thread then waits until it can re-obtain ownership of the * monitor and resumes execution. * <p> * As in the one argument version, interrupts and spurious wakeups are * possible, and this method should always be used in a loop: * <pre> * synchronized (obj) { * while (<condition does not hold>) * obj.wait(timeout, nanos); * ... // Perform action appropriate to condition * } * </pre> * This method should only be called by a thread that is the owner * of this object's monitor. See the {@code notify} method for a * description of the ways in which a thread can become the owner of * a monitor. * * @param timeout the maximum time to wait in milliseconds. * @param nanos additional time, in nanoseconds range * 0-999999. * @exception IllegalArgumentException if the value of timeout is * negative or the value of nanos is * not in the range 0-999999. * @exception IllegalMonitorStateException if the current thread is not * the owner of this object's monitor. * @exception InterruptedException if any thread interrupted the * current thread before or while the current thread * was waiting for a notification. The <i>interrupted * status</i> of the current thread is cleared when * this exception is thrown. */ public final void wait(long timeout, int nanos) throws InterruptedException { if (timeout < 0) { throw new IllegalArgumentException("timeout value is negative"); } if (nanos < 0 || nanos > 999999) { throw new IllegalArgumentException( "nanosecond timeout value out of range"); } if (nanos >= 500000 || (nanos != 0 && timeout == 0)) { timeout++; } wait(timeout); } /** * Causes the current thread to wait until another thread invokes the * {@link java.lang.Object#notify()} method or the * {@link java.lang.Object#notifyAll()} method for this object. * In other words, this method behaves exactly as if it simply * performs the call {@code wait(0)}. * <p> * The current thread must own this object's monitor. The thread * releases ownership of this monitor and waits until another thread * notifies threads waiting on this object's monitor to wake up * either through a call to the {@code notify} method or the * {@code notifyAll} method. The thread then waits until it can * re-obtain ownership of the monitor and resumes execution. * <p> * As in the one argument version, interrupts and spurious wakeups are * possible, and this method should always be used in a loop: * <pre> * synchronized (obj) { * while (<condition does not hold>) * obj.wait(); * ... // Perform action appropriate to condition * } * </pre> * This method should only be called by a thread that is the owner * of this object's monitor. See the {@code notify} method for a * description of the ways in which a thread can become the owner of * a monitor. * * @exception IllegalMonitorStateException if the current thread is not * the owner of the object's monitor. * @exception InterruptedException if any thread interrupted the * current thread before or while the current thread * was waiting for a notification. The <i>interrupted * status</i> of the current thread is cleared when * this exception is thrown. * @see java.lang.Object#notify() * @see java.lang.Object#notifyAll() */ public final void wait() throws InterruptedException { wait(0); } /** * Called by the garbage collector on an object when garbage collection * determines that there are no more references to the object. * A subclass overrides the {@code finalize} method to dispose of * system resources or to perform other cleanup. * <p> * The general contract of {@code finalize} is that it is invoked * if and when the Java<font size="-2"><sup>TM</sup></font> virtual * machine has determined that there is no longer any * means by which this object can be accessed by any thread that has * not yet died, except as a result of an action taken by the * finalization of some other object or class which is ready to be * finalized. The {@code finalize} method may take any action, including * making this object available again to other threads; the usual purpose * of {@code finalize}, however, is to perform cleanup actions before * the object is irrevocably discarded. For example, the finalize method * for an object that represents an input/output connection might perform * explicit I/O transactions to break the connection before the object is * permanently discarded. * <p> * The {@code finalize} method of class {@code Object} performs no * special action; it simply returns normally. Subclasses of * {@code Object} may override this definition. * <p> * The Java programming language does not guarantee which thread will * invoke the {@code finalize} method for any given object. It is * guaranteed, however, that the thread that invokes finalize will not * be holding any user-visible synchronization locks when finalize is * invoked. If an uncaught exception is thrown by the finalize method, * the exception is ignored and finalization of that object terminates. * <p> * After the {@code finalize} method has been invoked for an object, no * further action is taken until the Java virtual machine has again * determined that there is no longer any means by which this object can * be accessed by any thread that has not yet died, including possible * actions by other objects or classes which are ready to be finalized, * at which point the object may be discarded. * <p> * The {@code finalize} method is never invoked more than once by a Java * virtual machine for any given object. * <p> * Any exception thrown by the {@code finalize} method causes * the finalization of this object to be halted, but is otherwise * ignored. * * @throws Throwable the {@code Exception} raised by this method */ protected void finalize() throws Throwable { } }
1.clone方法
保护方法,实现对象的浅复制,只有实现了Cloneable接口才可以调用该方法,否则抛出CloneNotSupportedException异常。
2.getClass方法
final方法,获得运行时类型。
3.toString方法
该方法用得比较多,一般子类都有覆盖。
4.finalize方法
该方法用于释放资源。因为无法确定该方法什么时候被调用,很少使用。
5.equals方法
该方法是非常重要的一个方法。一般equals和==是不一样的,但是在Object中两者是一样的。子类一般都要重写这个方法。
6.hashCode方法
该方法用于哈希查找,重写了equals方法一般都要重写hashCode方法。这个方法在一些具有哈希功能的Collection中用到。
一般必须满足obj1.equals(obj2)==true。可以推出obj1.hash- Code()==obj2.hashCode(),但是hashCode相等不一定就满足equals。不过为了提高效率,应该尽量使上面两个条件接近等价。
7.wait方法
wait方法就是使当前线程等待该对象的锁,当前线程必须是该对象的拥有者,也就是具有该对象的锁。wait()方法一直等待,直到获得锁或者被中断。wait(long timeout)设定一个超时间隔,如果在规定时间内没有获得锁就返回。
调用该方法后当前线程进入睡眠状态,直到以下事件发生。
(1)其他线程调用了该对象的notify方法。
(2)其他线程调用了该对象的notifyAll方法。
(3)其他线程调用了interrupt中断该线程。
(4)时间间隔到了。
此时该线程就可以被调度了,如果是被中断的话就抛出一个InterruptedException异常。
8.notify方法
该方法唤醒在该对象上等待的某个线程。
9.notifyAll方法
该方法唤醒在该对象上等待的所有线程。
以后面试的人再问你线程中使用的方法哪些是Object 的方法,哪些是线程的方法。
别说我没有告诉你!!