zoukankan      html  css  js  c++  java
  • 机器学习:数据处理、算法选择、算法验证

    1. 数据处理

    • 转换数据格式
       比如将名称用数字表示、浮点数转为整数
    • 特征值的类型
       离散型还是连续型,这会影响算法的选择
    • 特征值的提取
       去掉没用的数据比如 ID 值
       去掉发生频率太低的特征
       直接提取有用的特征
       需要的话整合特征,比如
         取一段时间内的均值做特征值
         取两列数据的和做特征值
         取两列数据的皮尔逊相关系数 (Pearson Correlation Coefficient) 做特征值
    • 特征值编码
       比如一个特征有5个值,自然顺序编码可以用 1~5 代替,独热编码用 00001、00010 表示
    • 特征值缺失
       照样使用、扔掉、还是填补
       填补方式
         取特殊值如 -1、0、Null 填补
         取均值填补
         极大似然估计、建模预测、高维映射、多重插补等
    • 标签值缺失
       扔掉
    • 重复数据
       扔掉还是照样使用
    • 异常值 (outlier) 处理
       扔掉、鲁棒回归、或者使用对数或者高斯核对其转换
    • 归一化
       为防有些特征值权重太大,进行归一比如通过
         (small newValue = (oldValue - min)/(max - min))
       可以转化为 0 到 1 的值
    • 标准化
      (small newValue = (oldValue - mean)/std)    ## 减去平均值,再除以方差
    • 正则化
       作用是降维?减少特征?
    • 降维
       用于减少特征数量或是样本数量,只保留重要的数据,比如算法 PCA 和 SVD
        PCA(主成分分析)
         取 N 个方差最大且相互正交的方向,进行矩阵转换,步骤如下
         1. 先计算数据集的协方差矩阵 covMat
         2. 再通过下面的代码求 covMat 的特征值向量和特征向量矩阵
            (small np.linalg.eig(np.mat(covMat)))
         3. 取最大的 N 个特征值
         4. 使用新的特征向量矩阵将原始数据集矩阵转换到只有 N 个特征值的新的数据集
        SVD (奇异值分解)
         取 N 个最大的奇异值,进行矩阵转换,步骤如下
         1. 分解原数据矩阵 (small Data(m,n) = U(m,m) * Σ(m,n) * VT(n,n)),代码如下
            (small U,Sigma,VT = np.linalg.svd(data))
         2. 其中 (small Σ(m,n)) 只有对角线有值,取最大的 r 个值为新矩阵 SigmaR,则
            (small Data(m,n) ≈ U(m,r) * Σ(r,r) * V.T(r,n))
         3. 然后通过下面代码对原数据进行压缩
            (small dataNew = U[:,:r] * SigmaR * VT[:r,:])
    • 存储空间
       可否使用稀疏矩阵减少空间
    • 非均衡分类
       主要以下两种
        1. 正反例数目相差大,可以用过抽样和欠抽样方法来调节正反例数目
        2. 算法要考虑分类错的代价,如垃圾邮件分到收件箱和正常邮件分到垃圾箱后果不同
       混淆矩阵
        (small a[i] [j]):  预测 i 类型结果出现的是 j 类型的次数,完美的分类器非对角元素均为 0
        (small TP):   预测 +1 结果是 +1
        (small TN):   预测 -1 结果是 -1
        (small FP):   预测 +1 结果是 -1
        (small FN):   预测 -1 结果是 +1
       正确率:
        (small TP/(TP+FP))    ## FN 代价比较小则更关注正确率
       召回率
        (small TP/(TP+FN))    ## FN 代价比较大则更关注召回率
       ROC 曲线
        横轴是 (small FP/(FP+TN))、纵轴是 (small TP/(TP+FN))
        曲线下的面积给出的是分类器的平均性能值
    • 数据可视化
       选择哪些特征,用什么图形显示,当特征太多时很难在一个图中显示出来

    2. 算法选择

    • 想要预测目标变量的值,可以选择监督学习算法,进一步确定目标变量类型,如果目标变量是离散型可以选择分类器算法,如果目标变量是连续型的数值则需要选择回归算法
    • 不用预测目标变量的值,可以选择无监督学习算法,进一步分析是否需要将数据划分为离散的组,如果这是唯一需求,则使用聚类算法,如果还要估计数据与每个分组的相似程度,则需要使用密度估计算法
    • 多数情况下,上面的方法都能帮助选择恰当的机器学习算法,但这也并非一成不变
    • 我们只能在一定程度上缩小算法的选择范围,一般并不存在最好的算法或者可以给出最好结果的算法,一般说来发现最好算法的关键环节是反复试错的迭代过程

    3. 算法验证

    • 划分数据集
       训练集和测试集:一个用于训练,一个用于测试,训练集要更大,两个数据集要有随机性
       做交叉验证,比如:
        1. 数据分为 K 个子集,一个作测试集,其余作训练集,重复 K 次做交叉验证
        2. 数据分为 K 个子集,每个又分 S0,S1 子集,用 S0 训练,用 S1 测试,再反过来用
        3. 每个样本单独做测试集,其余 n-1 个样本作训练集,重复 n 次

    • SRM 和 ERM
       泛化能力用于衡量算法在样本空间上的表现
       如果过于专注于样本,会出现过拟合的现象
       如果过于罔顾样本,又会出现欠拟合的现象
       所以需要张弛有度,SRM 和 ERM 就是研究这个的
       损失函数
        记为 (small L(Y, F(X))) 针对单个具体的样本,表示预测值与真实值之间的差距
         0-1 损失函数
           (small L(Y, F(X)) = 1 quad if quad Y != F(X) quad else quad 0)
         平方损失函数
           (small L(Y, F(X)) = (Y - F(X))^{2})
         绝对损失函数
           (small L(Y, F(X)) = |Y - F(X)|)
         逻辑损失函数
           (small L(Y, F(X)) = Ylog(1+e^{-F(X)}) + (1-Y)log(1+e^{F(X)}))
         对数损失函数
           (small L(Y, P(Y|X)) = - logP(Y|X) = - frac{1}{N}sum_{i=1}^{M}sum_{j=1}^{N}y_{ij}log(p_{ij}))
             (small N) 为样本数,(small M) 为类别数
             (small y_{ij}) 表示类别 j 是否是输入实例 (small x_{i}) 的真实类别
             (small p_{ij}) 为预测输入实例 (small x_{i}) 属于类别 j 的概率
         
         不同的损失函数用于不同的算法
         比如平方损失函数和绝对损失函数通常用于回归,其他几种用于分类
      ERM
        Empirical Risk Minmization,经验风险最小化
          (small R = frac{1}{N}sum_{i=1}^{N}L(y_{i},f(x_{i}))))
        ERM 就是最小化 R,但 R 太小容易出现过拟合的情况
      SRM
        Structural Risk Minmization,结构风险最小化
          (small R = frac{1}{N}sum_{i=1}^{N}L(y_{i},f(x_{i}))) + lambda J(f))
             (small lambda) 是一个系数,(small J(f)) 表示模型 (small f) 的复杂度
        相当于
          (small SRM = ERM + λJ(f))
        如果 ERM 越小就意味着函数复杂度也就是 (small λJ(f)) 越大
        这样求出来的使得 R 最小的模型就是一个比较平衡的模型

    • 最小化目标函数
      ERM 公式和 SRM 公式也可以被称为目标函数,可改写为
        (small Obj = L + O)
        其中
         L 代表损失函数用于衡量模型对数据的拟合程度
         O 可称为正则化项,用于惩罚复杂的模型,防止过拟合,常用 L2 正则和 L1 正则

          L1-NormL2-Norm,中文称 L1 正则化和 L2 正则化,或 L1 范数和 L2 范数

          L1 正则化是指向量中各个元素的绝对值之和,通常表示为
            (small left | W ight |_{1} = sum_{i = 1}^{N}|w_{i}|)
          L2 正则化是指向量中各个元素的平方和然后再求平方根,通常表示为
            (small left | W ight |_{2} = sqrt{sum_{i = 1}^{N}w_{i}^{2}})

          L1 正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
          L2 正则化可以防止模型过拟合 (一定程度上,L1 也可以防止过拟合)

          比如 Lasso 回归就使用的 L1,而 Ridge 回归(岭回归)就使用的 L2

       训练数据就是最小化目标函数 Obj
        多数时候是求梯度,通过一定步长沿着梯度前进,最终实现最小化 Obj

    • 偏差
       预测值和实际值的差距

    • 方差
       预测值的变化范围

    • 皮尔逊相关系数
       可用于计算预测结果和真实结果之间的相关性



  • 相关阅读:
    arm activesync 串口(wince移植篇)
    请问生产成本收集器与标准成本评估有什么关联?
    BAPI / RFC with Delphi(系列之六)--TSAPFunctions使用BAPI创建PO(有登录对话框的delphi源代码)
    关于项目团队的发展阶段特点、问题、应对措施、领导风格
    如何在sap里设置打印机参数
    BAPI / RFC with Delphi(系列之四)--TSAPFunctions使用(有登录对话框的delphi源代码)
    BAPI / RFC with Delphi(系列之七)--TBAPIControl使用BUS1001显示物料(Delphi源代码)
    BAPI / RFC with Delphi(系列之五)--TSAPFunctions和TSAPLogoncontrol使用(无登录对话框Delphi源代码)
    Guice 1.0 用户指南
    BAPI / RFC with Delphi(系列之八)--TBAPIControl使用BUS2012建立PO(Delphi源代码)
  • 原文地址:https://www.cnblogs.com/moonlight-lin/p/12273567.html
Copyright © 2011-2022 走看看