zoukankan      html  css  js  c++  java
  • UVA10780 Again Prime? No time.

              Again Prime? No time.

    The problem statement is very easy. Given a number n you have to determine the largest power of m,
    not necessarily prime, that divides n!.


    Input
    The input file consists of several test cases. The first line in the file is the number of cases to handle.
    The following lines are the cases each of which contains two integers m (1 < m < 5000) and n
    (0 < n < 10000). The integers are separated by an space. There will be no invalid cases given and
    there are not more that 500 test cases.


    Output
    For each case in the input, print the case number and result in separate lines. The result is either an
    integer if m divides n! or a line ‘Impossible to divide’ (without the quotes). Check the sample input
    and output format.


    Sample Input
    2
    2 10
    2 100


    Sample Output
    Case 1:
    8
    Case 2:
    97

    题意:给出m,n;求n!可以整除m的个数

    tip:计算它的质因子,然后求其最小幂

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    
    using namespace std;
    
    int main()
    {
        int t,c=1;
        cin>>t;
        while(t--)
        {
            int m,n,p,ans=1000000,a,b;
            cin>>m>>n;
            for(int i=2;m!=1;i++)
            {
                int p=0;
                while(m%i==0)
                {
                    m/=i;
                    p++;
                }
    
                if(p)
                {
                    a=n;///开始用n
                    b=0;///出现次数
                    while(a)
                    {
                        b+=a/i;
                        a/=i;
                    }
                    ans=min(ans,b/p);
                }
            }
            cout<<"Case "<<c++<<":"<<endl;
            if(ans==0)
                cout<<"Impossible to divide
    ";
            else
                cout<<ans<<endl;
        }
        return 0;
    }
  • 相关阅读:
    图(个人复习专用)
    树(复习用)
    由后序遍历与中序遍历确定前序遍历
    网络流问题
    无向图的结合点
    有向图的强连通分量
    最短路径Shortest Path algorithm
    【转】Vector与ArrayList区别
    Java中compareto的用法。
    Java中的Integer和int等包装类和基本数据类型简单比较
  • 原文地址:https://www.cnblogs.com/moqitianliang/p/4679314.html
Copyright © 2011-2022 走看看