zoukankan      html  css  js  c++  java
  • uva11029

                Leading and Trailing

    Apart from the novice programmers, all others know that you can’t exactly represent numbers raised
    to some high power. For example, the C function pow(125456, 455) can be represented in double data
    type format, but you won’t get all the digits of the result. However we can get at least some satisfaction
    if we could know few of the leading and trailing digits. This is the requirement of this problem.


    Input
    The first line of input will be an integer T < 1001, where T represents the number of test cases. Each
    of the next T lines contains two positive integers, n and k. n will fit in 32 bit integer and k will be less
    than 10000001.


    Output
    For each line of input there will be one line of output. It will be of the format LLL . . . T T T, where
    LLL represents the first three digits of n
    k and T T T represents the last three digits of n,k. You areassured that n,k will contain at least 6 digits.


    Sample Input
    2
    123456 1
    123456 2


    Sample Output
    123...456
    152...936

    题意:给n,k;求n的k次方的前三位和后三位

    tip:后三位取余%1000,前三位这样:如x=123456=1.23456*10^5,则 log10(x)=log10(1.23456)+5 ; log10(1.23456)=y; 10^y=1.23456 

      前三位即是10^y*100;注意后三位可能在前面有0的存在。

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cmath>
     5 #define ll long long
     6 
     7 using namespace std;
     8 
     9 /*ll power1(ll a,ll b)
    10 {
    11     int ans=a;
    12     for(int i=1;i<b;i++)
    13         ans=ans*a%1000;
    14     return ans%1000;
    15 }*/
    16 ll power1(ll a,ll n)  ///二分pow
    17 {
    18     ll ans=1;
    19     while(n)
    20     {
    21         if(n&1) ///为奇
    22             ans=ans*a%1000;
    23         a=a*a%1000;
    24         n/=2;
    25     }
    26     return ans%1000;
    27 }
    28 
    29 ll power2(ll a,ll b)
    30 {
    31     ll p,q,ans;
    32     double f=b*log10(a);
    33     q=(ll)f;///整数部分
    34     p=(ll)(f*10000000)-q*10000000;///小数部分*10000000
    35     double x=1.0*p/10000000;
    36     ans=(ll)(pow(10,x)*100);
    37     return ans;
    38 }
    39 
    40 int main()
    41 {
    42     ll n,k;
    43     int t;
    44     cin>>t;
    45     while(t--)
    46     {
    47         cin>>n>>k;
    48         ll p=power2(n,k),q=power1(n,k);
    49         printf("%lld...%03lld
    ",p,q);
    50     }
    51     return 0;
    52 }
  • 相关阅读:
    牛客练习赛19 D-托米去购物
    牛客练习赛19 托米的简单表示法
    Codeforces Round #492 (Div. 2) [Thanks, uDebug!]
    Codeforces Round #393 (Div. 2) (8VC Venture Cup 2017
    Codeforces Round #393 (Div. 2) (8VC Venture Cup 2017
    Codeforces Round #491 (Div. 2) E
    I00018 生成全1数
    I00017 生成9开头的按位递减数
    I00017 生成9开头的按位递减数
    HDU1042 n!
  • 原文地址:https://www.cnblogs.com/moqitianliang/p/4681256.html
Copyright © 2011-2022 走看看