题意:求2^2^2^2^2.......^2%p的值,T组询问。
欧拉降幂多用几次就好了。
顺便试了下fwrite输出优化 ,效果显著。
#include<cstring> #include<iostream> #include<cctype> #include<cstdio> #define writ(x,c) write(x),push(c); using namespace std; inline char nc() { static char buf[100000],*p1=buf,*p2=buf; return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++; } inline int read() { char c;int x=0;bool f=0; for(; !isdigit(c); c=nc()) if(c=='-') f=1; for(; isdigit(c); c=nc()) x=(x<<1)+(x<<3)+c-48; return (f ? -x : x); } char pbuf[100000],*pp=pbuf; void push(const char c) { if(pp-pbuf==100000) fwrite(pbuf,1,100000,stdout),pp=pbuf; *pp++=c; } void write(int x) { static int sta[35]; int top=0; do{sta[top++]=x%10,x/=10;}while(x); while(top) push(sta[--top]+'0'); } const int M=1001001; int phi[M],prime[M],tot; bool not_prime[M]; inline int Phi(int x) { int i,re=x; for(i=2; i*i<=x; i++) if(x%i==0) { re/=i; re*=i-1; while(x%i==0) x/=i; } if(x^1) re/=x,re*=x-1; return re; } inline int KSM(long long x,int y,int p) { long long res=1; while(y) { if(y&1) (res*=x)%=p; (x*=x)%=p; y>>=1; } return res%p; } inline int calc(int p) { if(p==1) return 0; int tmp=0,cur,res; while(~p&1) p>>=1,++tmp; cur=Phi(p); res=calc(cur); (res+=cur-tmp%cur)%=cur,res=KSM(2,res,p); return res<<tmp; } int main() { register int T=read(),p; while(T--) { p=read(); writ(calc(p),' '); } fwrite(pbuf,1,pp-pbuf,stdout); }