嘟嘟嘟
先看了一遍lucas,还是只能拿50分(似乎已经满足了)。
正解当然还是看某个大佬的啦。
我们要求的就是
[f(n, k) = sum _ {i = 0} ^ {k} C _ {n} ^ {i} \% p
]
然后根据lucas定理,就开始愉快的推式子了……
[egin{align*}
f(n, k)
&= sum _ {i = 0} ^ {k} C _ {n} ^ {i} \% p \
&= sum _ {i = 0} ^ {k} C_ {n / p} ^ {i / p} * C _ {n \% p} ^ {i \% p} \
&= C_{n / p} ^ {0} sum _ {i = 0} ^ {p - 1} C _ {n \% p} ^ {i} + C _ {n / p} ^ {1} sum _ {i = 0} ^ {p - 1} C _ {n \% p} ^ {i} + ldots + C_{n / p} ^ {k / p - 1} sum _ {i = 0} ^ {p - 1} C _ {n \% p} ^ {i} + C _ {n / p} ^ {k / p} sum _ {i = 0} ^ {k \% p} C _ {n \% p} ^ {i}\
&= sum _ {i = 0} ^ {p - 1} C _ {n \% p} ^ {i} * (C _ {n / p} ^ {0} + C_{n / p} ^ {1} + ldots + C_{n / p} ^ {k / p - 1}) + C _ {n / p} ^ {k / p} sum _ {i = 0} ^ {k \% p} C _ {n \% p} ^ {i} \
&= f(n \% p, p - 1) * f(n / p, k / p - 1) + C _ {n / p} ^ {k / p} * f(n \% p, k \% p) \
end{align*}
]
然后把(f(n \% p, k \% p))预处理一下,就完事了。(说的真轻松……)
#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("")
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define In inline
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 2505;
const int p = 2333;
inline ll read()
{
ll ans = 0;
char ch = getchar(), last = ' ';
while(!isdigit(ch)) last = ch, ch = getchar();
while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
if(last == '-') ans = -ans;
return ans;
}
inline void write(ll x)
{
if(x < 0) x = -x, putchar('-');
if(x >= 10) write(x / 10);
putchar(x % 10 + '0');
}
ll n, K;
ll C[maxn][maxn], f[maxn][maxn];
In ll inc(ll a, ll b) {return a + b >= p ? a + b - p : a + b;}
In ll lucas(ll n, ll m)
{
if(!m || n == m) return 1;
if(n < m) return 0;
return C[n % p][m % p] * lucas(n / p, m / p) % p;
}
In ll F(ll n, ll K)
{
if(K < 0) return 0;
if(!n || !K) return 1;
if(n < p && K < p) return f[n][K];
return inc(f[n % p][p - 1] * F(n / p, K / p - 1) % p, lucas(n / p, K / p) * f[n % p][K % p] % p);
}
In void init()
{
for(int i = 0; i < maxn; ++i) C[i][0] = 1;
for(int i = 1; i < maxn; ++i)
for(int j = 1; j <= i; ++j)
C[i][j] = inc(C[i - 1][j - 1], C[i - 1][j]);
for(int i = 0; i < maxn; ++i) f[i][0] = 1;
for(int i = 0; i < maxn; ++i)
for(int j = 1; j < maxn; ++j)
f[i][j] = inc(C[i][j], f[i][j - 1]);
}
int main()
{
init();
int T = read();
while(T--)
{
n = read(), K = read();
write(F(n, K)), enter;
}
return 0;
}