zoukankan      html  css  js  c++  java
  • [NOI Online #2 提高组]子序列问题

    嘟嘟嘟


    这个NOI网络赛我也不知道是个什么东西,不过据说题目的质量还是挺高的,于是教练就让我做了一下。


    讲真我就不会这种硬是要你把(O(n^2))暴力化简的题。


    这种题,一种很常见的思路就是依次考虑以(i)结尾的所有子区间是怎么算的。
    首先肯定要离散化。
    接着分两种情况,第一个是(a_i)在前(i-1)个数中从没出现过,那么对于所有的(j in [1,i-1],f(j,i) = f(j,i-1)+1)
    另一种情况是(a_i)在前(i-1)个数中出现过,即(pre_i)为上一次出现的位置,那么对于所有的(j in [pre_i+1,i-1],f(j,i) = f(j,i-1)+1),而对于(j in [1,pre_i], f(j,i) = f(j,i-1)),即在(pre_i)之前没有出现新的数。


    于是我们就有一个(O(n^2))的递推(f(l,r))的算法:
    首先有(f(i,i)=1)
    (j in [1,pre_i])时,有(f(j,i)=f(j, i-1))
    (j in [pre_i + 1, i-1])时,有(f(j,i) = f(j, i - 1)+1)


    然后我们可以用线段树进行优化。
    对于(f(j,i))来说,是区间每次加1,但是我们要求的是(sum (f(j,i))^2),所以我们要简单的推一下:
    对于(m)个数(a_1, a_2, ldots a_m),如果每一个数都加(n),那么他们的平方和就变成了((a_1+n)^2 + (a_2+n) ^ 2 ldots (a_m+n)^2)
    展开后,和原来(sum_{i=1}^{m}a_i ^ 2)的差值就是(m * n ^ 2 + 2 * n * sum_{i=1}^{m} a_i),这个就可以用线段树区间和维护了。


    时间复杂度(O(nlogn)),因为这种写法只用一次修改,所以常数能稍稍小一点。

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    #include<cstdlib>
    #include<cctype>
    #include<vector>
    #include<queue>
    #include<assert.h>
    #include<ctime>
    using namespace std;
    #define enter puts("") 
    #define space putchar(' ')
    #define Mem(a, x) memset(a, x, sizeof(a))
    #define In inline
    #define forE(i, x, y) for(int i = head[x], y; ~i && (y = e[i].to); i = e[i].nxt)
    typedef long long ll;
    typedef double db;
    const int INF = 0x3f3f3f3f;
    const db eps = 1e-8;
    const int maxn = 1e6 + 5;
    const ll mod = 1e9 + 7;
    In ll read()
    {
    	ll ans = 0;
    	char ch = getchar(), las = ' ';
    	while(!isdigit(ch)) las = ch, ch = getchar();
    	while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
    	if(las == '-') ans = -ans;
    	return ans;
    }
    In void write(ll x)
    {
    	if(x < 0) x = -x, putchar('-');
    	if(x >= 10) write(x / 10);
    	putchar(x % 10 + '0');
    }
    In void MYFILE()
    {
    #ifndef mrclr
    	freopen(".in", "r", stdin);
    	freopen(".out", "w", stdout);
    #endif
    }
    
    int n, a[maxn];
    
    int li[maxn], _n;
    int pos[maxn], pre[maxn];
    In void init()
    {
    	sort(li + 1, li + n + 1);
    	_n = unique(li + 1, li + n + 1) - li - 1;
    	for(int i = 1; i <= n; ++i) a[i] = lower_bound(li + 1, li + _n + 1, a[i]) - li;
    	for(int i = 1; i <= n; ++i) pre[i] = pos[a[i]], pos[a[i]] = i;
    }
    
    In ll ADD(ll a, ll b) {return a + b < mod ? a + b : a + b - mod;}
    
    int l[maxn << 2], r[maxn << 2];
    ll sum[maxn << 2], dat[maxn << 2], lzy[maxn << 2];
    In void build(int L, int R, int now)
    {
    	l[now] = L, r[now] = R;
    	if(L == R) return;
    	int mid = (L + R) >> 1;
    	build(L, mid, now << 1), build(mid + 1 , R, now << 1 | 1);
    }
    In void change(int now, ll d)
    {
    	int len = r[now] - l[now] + 1;
    	lzy[now] += d;
    	dat[now] = ADD(dat[now], ADD(1LL * len * d % mod * d % mod, (d * sum[now] % mod << 1) % mod));
    	sum[now] = ADD(sum[now], d * len % mod);
    }
    In void pushdown(int now)
    {
    	if(lzy[now])
    	{
    		change(now << 1, lzy[now]);
    		change(now << 1 | 1, lzy[now]);
    		lzy[now] = 0;
    	}
    }
    In void update(int L, int R, int now)
    {
    	if(l[now] == L && r[now] == R) {change(now, 1); return;}
    	pushdown(now);
    	int mid = (l[now] + r[now]) >> 1;
    	if(R <= mid) update(L, R, now << 1);
    	else if(L > mid) update(L, R, now << 1 | 1);
    	else update(L, mid, now << 1), update(mid + 1, R, now << 1 | 1);
    	sum[now] = ADD(sum[now << 1], sum[now << 1 | 1]);
    	dat[now] = ADD(dat[now << 1], dat[now << 1 | 1]);
    }
    
    int main()
    {
    //	MYFILE();
    	n = read();
    	for(int i = 1; i <= n; ++i) li[i] = a[i] = read();
    	init();
    	build(1, n, 1);
    	ll ans = 0;
    	for(int i = 1; i <= n; ++i) update(pre[i] + 1, i, 1), ans = ADD(ans, dat[1]);
    	write(ans), enter;
    	return 0;
    }
    
  • 相关阅读:
    sss
    sss
    maven tomcat jstl 异常
    第1章 预备知识
    第2章 存储管理
    第8章 虚拟机字节码执行引擎
    第23章 Spring MVC初体验
    第1章 预备知识
    第5章 Java中的锁
    第13章 线程安全与锁优化
  • 原文地址:https://www.cnblogs.com/mrclr/p/13855498.html
Copyright © 2011-2022 走看看