DataFrame
DataFrame是Pandas中的一个表格型的数据结构,包含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型等),DataFrame即有行索引也有列索引,可以被看做是由Series组成的字典。
Series
它是一种类似于一维数组的对象,是由一组数据(各种NumPy数据类型)以及一组与之相关的数据标签(即索引)组成。仅由一组数据也可产生简单的Series对象
练习
import pandas as pd
import numpy as np
In [5]:
创建一个Series对象
s1 = pd.Series([4,6,-5,3])
[6]:
print(s1)
0 4
1 6
2 -5
3 3
dtype: int64
In [8]:
获取Series的值
s1.values#获取值
Out[8]:
array([ 4, 6, -5, 3], dtype=int64)
In [9]:
获取Series索引
s1.index#获取索引
Out[9]:
RangeIndex(start=0, stop=4, step=1)
In [10]:
指定索引创建Series对象
s2 = pd.Series([4.0,6.5,212,2.6],index=['a','b','c','d'])#指定索引
In [11]:
print(s2)
a 4.0
b 6.5
c 212.0
d 2.6
dtype: float64
In [12]:
根据Series索引取值
s2["a"]#根据索引取值
Out[12]:
4.0
In [15]:
s2[['c','d']]#取多个索引值
Out[15]:
c 212.0
d 2.6
dtype: float64
In [16]:
判断索引是否在Series
'c' in s2#判断索引是否在Series
Out[16]:
True
In [17]:
'e' in s2
Out[17]:
False
In [18]:
series可以看成一个定长的有序字典
#series可以看成一个定长的有序字典
dic1 = {"apple":5,"pen":'3',"applenpen":10}
s3 = pd.Series(dic1)
print(s3)#构建后顺序是一定的,不能改变
apple 5
pen 3
applenpen 10
dtype: object
In [20]:
DataFrame 构造
#DataFrame 构造
data = {'year':[2015,2016,2017,2018],
'income':[1000,2000,3000,4000],
'pay':[100,200,300,400]}
df1 = pd.DataFrame(data)
df1
Out[20]:
year | income | pay | |
---|---|---|---|
0 | 2015 | 1000 | 100 |
1 | 2016 | 2000 | 200 |
2 | 2017 | 3000 | 300 |
3 | 2018 | 4000 | 400 |
In [22]:
使用numpy构建dataframe
#使用numpy构建dataframe
df2 = pd.DataFrame(np.arange(12).reshape(3,4))
df2
'''
shape是查看数据有多少行多少列
reshape()是数组array中的方法,作用是将数据重新组织
'''
Out[22]:
0 | 1 | 2 | 3 | |
---|---|---|---|---|
0 | 0 | 1 | 2 | 3 |
1 | 4 | 5 | 6 | 7 |
2 | 8 | 9 | 10 | 11 |
In [24]:
指定索引和表头(第一列内容)构建dataframe
#指定索引和表头(第一列内容)
df3 = pd.DataFrame(np.arange(12).reshape(3,4),index=['a','b','c'],columns=["金","木","水","火"])
df3
Out[24]:
金 | 木 | 水 | 火 | |
---|---|---|---|---|
a | 0 | 1 | 2 | 3 |
b | 4 | 5 | 6 | 7 |
c | 8 | 9 | 10 | 11 |
In [27]:
DataFrame的属性
#DataFrame的属性
df3.columns#列
#DataFrame的属性
df3.columns#列
Out[35]:
Index(['金', '木', '水', '火'], dtype='object')
In [28]:
Out[28]:
Index(['a', 'b', 'c'], dtype='object')
In [29]
df3.values#值,二位数组形式
Out[29]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
In [30]:
df3.describe
Out[30]:
<bound method NDFrame.describe of 金 木 水 火
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11>
In [31]:
转置
#转置
df3.T
Out[31]:
a | b | c | |
---|---|---|---|
金 | 0 | 4 | 8 |
木 | 1 | 5 | 9 |
水 | 2 | 6 | 10 |
火 | 3 | 7 | 11 |
In [32]:
排序
#排序
df3.sort_index(axis=1)#axis=1是对列排序
Out[32]:
木 | 水 | 火 | 金 | |
---|---|---|---|---|
a | 1 | 2 | 3 | 0 |
b | 5 | 6 | 7 | 4 |
c | 9 | 10 | 11 | 8 |
In [33]:
df3.sort_index(axis=0)#axis=0是对行排序
Out[33]:
金 | 木 | 水 | 火 | |
---|---|---|---|---|
a | 0 | 1 | 2 | 3 |
b | 4 | 5 | 6 | 7 |
c | 8 | 9 | 10 | 11 |
In [34]:
#对某一列排序
df3.sort_index(by="金")
c:userswuzsappdatalocalprogramspythonpython36-32libsite-packagesipykernel_launcher.py:2: FutureWarning: by argument to sort_index is deprecated, please use .sort_values(by=...)
Out[34]:
金 | 木 | 水 | 火 | |
---|---|---|---|---|
a | 0 | 1 | 2 | 3 |
b | 4 | 5 | 6 | 7 |
c | 8 | 9 | 10 | 11 |