zoukankan      html  css  js  c++  java
  • TensorFlow迭代速度变慢的问题

    最近用TensorFlow实现遗传算法(Genetic Algorithms),发现迭代速度越来越慢,用time.time()观察以后,发现每次迭代都要比上一次慢0.5秒左右,但是每次迭代的计算量是差不多的。研究后发现,这是因为每次迭代都在计算图(Graph)里面增加了新的节点,节点越来越多,导致Memory Leak,迭代速度越来越慢。为了验证是否是这个原因造成的,增加了一行代码锁定图:

    graph.finalize()

    结果报错,说明确实是这个原因造成的。

    解决的办法是,每次迭代前重置默认图,然后新建一个图,将新建的图作为默认图,然后再向图里面增加节点。代码如下:

        tf.reset_default_graph()
        graph = tf.Graph()
        with graph.as_default() as g:

    加上这几句代码以后,每次迭代的运行时间就差不多了。

  • 相关阅读:
    安装solr
    Linux下安装mysql
    SQL JOIN
    SQL之TCL
    SQL之DCL
    SQL之DML
    SQL之DDL
    Mysql 常用查询语句
    Java-Poi 读取excel 数据
    工作中的第一份LoadRunner脚本
  • 原文地址:https://www.cnblogs.com/mstk/p/8150537.html
Copyright © 2011-2022 走看看