Scrapy--CrawlSpider
Scrapy框架中分两类爬虫,Spider类和CrawlSpider类。
此案例采用的是CrawlSpider类实现爬虫。
它是Spider的派生类,Spider类的设计原则是只爬取start_url列表中的网页,而CrawlSpider类定义了一些规则(rule)来提供跟进link的方便的机制,从爬取的网页中获取link并继续爬取的工作更适合。如爬取大型招聘网站
创建项目
scrapy startproject tencent #创建项目
创建模板
scrapy genspider crawl -t tencent 'hr.tencent.com' #tencent为爬虫名称 hr.tencent.com为限制域
创建完会模板后会生成一个tencent.py的文件
# -*- coding: utf-8 -*- import scrapy from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule class TencentSpider(CrawlSpider): name = 'tencent' allowed_domains = ['tencent.com'] start_urls = ['http://tencent.com/'] rules = ( Rule(LinkExtractor(allow=r'Items/'), callback='parse_item', follow=True), ) def parse_item(self, response): i = {} #i['domain_id'] = response.xpath('//input[@id="sid"]/@value').extract() #i['name'] = response.xpath('//div[@id="name"]').extract() #i['description'] = response.xpath('//div[@id="description"]').extract() return i
Link Extractors 的目的很简单: 提取链接。
每个LinkExtractor有唯一的公共方法是 extract_links(),它接收一个 Response 对象,并返回一个 scrapy.link.Link 对象。
LinkExtractors要实例化一次,并且 extract_links 方法会根据不同的 response 调用多次提取链接。
每个LinkExtractor有唯一的公共方法是 extract_links(),它接收一个 Response 对象,并返回一个 scrapy.link.Link 对象。
LinkExtractors要实例化一次,并且 extract_links 方法会根据不同的 response 调用多次提取链接。
主要参数:
allow:满足括号中“正则表达式”的值会被提取,如果为空,则全部匹配。
deny:与这个正则表达式(或正则表达式列表)不匹配的URL一定不提取。
allow_domains:会被提取的链接的domains。
deny_domains:一定不会被提取链接的domains。
restrict_xpaths:使用xpath表达式,和allow共同作用过滤链接。
allow:满足括号中“正则表达式”的值会被提取,如果为空,则全部匹配。
deny:与这个正则表达式(或正则表达式列表)不匹配的URL一定不提取。
allow_domains:会被提取的链接的domains。
deny_domains:一定不会被提取链接的domains。
restrict_xpaths:使用xpath表达式,和allow共同作用过滤链接。
rules
在rules中包含一个或多个Rule对象,每个Rule对爬取网站的动作定义了特定操作。如果多个rule匹配了相同的链接,则根据规则在本集合中被定义的顺序,第一个会被使用。
参数介绍:
LinkExtractor:是一个Link Extractor对象,用于定义需要提取的链接。
callback: 从link_extractor中每获取到链接时,参数所指定的值作为回调函数,该回调函数接受一个response作为其第一个参数
follow:是一个布尔(boolean)值,指定了根据该规则从response提取的链接是否需要跟进。 如果callback为None,follow 默认设置为True,否则默认为False。
process_links:指定该spider中哪个的函数将会被调用,从link_extractor中获取到链接列表时将会调用该函数。该方法主要用来过滤。
process_request:指定该spider中哪个的函数将会被调用, 该规则提取到每个request时都会调用该函数。 (用来过滤request)
以下是案例代码:item文件
import scrapy class TencentItem(scrapy.Item): # 职位 name = scrapy.Field() # 详情链接 positionlink = scrapy.Field() #职位类别 positiontype = scrapy.Field() # 人数 peoplenum = scrapy.Field() # 工作地点 worklocation = scrapy.Field() # 发布时间 publish = scrapy.Field()
pipeline文件
import json class TencentPipeline(object): def __init__(self): self.filename = open("tencent.json", "w") def process_item(self, item, spider): text = json.dumps(dict(item), ensure_ascii = False) + ", " self.filename.write(text.encode("utf-8")) return item def close_spider(self, spider): self.filename.close()
setting文件
BOT_NAME = 'tencent' SPIDER_MODULES = ['tencent.spiders'] NEWSPIDER_MODULE = 'tencent.spiders' LOG_FILE = 'tenlog.log' LOG_LEVEL = 'DEBUG' LOG_ENCODING = 'utf-8' ROBOTSTXT_OBEY = True DEFAULT_REQUEST_HEADERS = { 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', } ITEM_PIPELINES = { 'tencent.pipelines.TencentPipeline': 300, }
spider文件
# -*- coding: utf-8 -*- import scrapy # 导入链接匹配规则类,用来提取符合规则的链接 from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule from tencent.items import TencentItem class TenecntSpider(CrawlSpider): name = 'tencent1' # 可选,加上会有一个爬去的范围 allowed_domains = ['hr.tencent.com'] start_urls = ['http://hr.tencent.com/position.php?&start=0#a'] # response中提取 链接的匹配规则,得出是符合的链接 pagelink = LinkExtractor(allow=('start=d+')) print (pagelink) # 可以写多个rule规则 rules = [ # follow = True需要跟进的时候加上这句。 # 有callback的时候就有follow # 只要符合匹配规则,在rule中都会发送请求,同是调用回调函数处理响应 # rule就是批量处理请求 Rule(pagelink, callback='parse_item', follow=True), ] # 不能写parse方法,因为源码中已经有了,回覆盖导致程序不能跑 def parse_item(self, response): for each in response.xpath("//tr[@class='even'] | //tr[@class='odd']"): # 把数据保存在创建的对象中,用字典的形式 item = TencentItem() # 职位 # each.xpath('./td[1]/a/text()')返回的是列表,extract转为unicode字符串,[0]取第一个 item['name'] = each.xpath('./td[1]/a/text()').extract()[0] # 详情链接 item['positionlink'] = each.xpath('./td[1]/a/@href').extract()[0] # 职位类别 item['positiontype'] = each.xpath("./td[2]/text()").extract()[0] # 人数 item['peoplenum'] = each.xpath('./td[3]/text()').extract()[0] # 工作地点 item['worklocation'] = each.xpath('./td[4]/text()').extract()[0] # 发布时间 item['publish'] = each.xpath('./td[5]/text()').extract()[0] # 把数据交给管道文件 yield item
这个样就实现了一个简单的CrawlSpider类爬虫