zoukankan      html  css  js  c++  java
  • DBSCAN 聚类分析

    DBSCANCLUSTER

    DBSCAN(Density-basedspatial clustering ofapplications with noise)Martin.Ester, Hans-PeterKriegel等人于1996年提出的一种基于密度的空间的数据聚类方法,该算法是最常用的一种聚类方法[1,2]。该算法将具有足够密度区域作为距离中心,不断生长该区域.该算法利用基于密度的聚类的概念,即要求聚类空间中的一定区域内所包含对象(点或其他空间对象)的数目不小于某一给定阈值。该方法能在具有噪声的空间数据库中发现任意形状的簇,可将密度足够大的相邻区域连接,能有效处理异常数据,主要用于对空间数据的聚类,优缺点总结如下:

    优点:

    (1)聚类速度快且能够有效处理噪声点和发现任意形状的空间聚类;

    (2)与K-MEANS比较起来,不需要输入要划分的聚类个数;

    (3)聚类簇的形状没有偏倚;

    (4)可以在需要时输入过滤噪声的参数。

    缺点:

    (1)当数据量增大时,要求较大的内存支持I/O消耗也很大;

    (2)当空间聚类的密度不均匀、聚类间距差相差很大时,聚类质量较差,因为这种情况下参数MinPts和Eps选取困难。

    (3)算法聚类效果依赖与距离公式选取,实际应用中常用欧式距离,对于高维数据,存在“维数灾难”。

    基本概念:

    (1)Eps邻域:给定对象半径Eps内的邻域称为该对象的Eps邻域;

    (2)核心点(core point):如果对象的Eps邻域至少包含最小数目MinPts的对象,则称该对象为核心对象;

    (3)边界点(edge point):边界点不是核心点,但落在某个核心点的邻域内;

    (4)噪音点(outlier point):既不是核心点,也不是边界点的任何点;

    (5)直接密度可达(directly density-reachable):给定一个对象集合D,如果p在q的Eps邻域内,而q是一个核心对象,则称对象p从对象q出发时是直接密度可达的;

    (6)密度可达(density-reachable):如果存在一个对象链  p1, …,pi,.., pn,满足p1 = p 和pn = q,pi是从pi+1关于Eps和MinPts直接密度可达的,则对象p是从对象q关于Eps和MinPts密度可达的;

    (7)密度相连(density-connected):如果存在对象O∈D,使对象p和q都是从O关于Eps和MinPts密度可达的,那么对象p到q是关于Eps和MinPts密度相连的。

    (8)类(cluster):设非空集合,若满足:

    (a),且从密度可达,那么。

    (b)和密度相连。

    有关核心点、边界点、噪音点以及直接密度可达、密度可达和密度相连解释如图1


    图1

    1红色为核心点,黄色为边界点,蓝色为噪音点,minPts = 4Eps是图中圆的半径大小。

    有关直接密度可达密度可达定义实例如图2所示:其中,Eps用一个相应的半径表示,设MinPts=3,请分析Q,M,P,S,O,R5个样本点之间的关系。


    2

    根据前文基本概念的描述知道:由于有标记的各点­MPOREps近邻均包含3个以上的点,因此它们都是核对象;是从P“直接密度可达;而Q则是从­M“直接密度可达;基于上述结果,Q是从P“密度可达;但PQ无法密度可达”(非对称)。类似地,SRO密度可达的;ORS均是密度相连(对称)的。

     

    DBSCAN算法原理:

    1DBSCAN通过检查数据集中每点的Eps邻域来搜索簇,如果点pEps邻域包含的点多于MinPts个,则创建一个以p为核心对象的簇;

    2)然后,DBSCAN迭代地聚集从这些核心对象直接密度可达的对象,这个过程可能涉及一些密度可达簇的合并;

    3)当没有新的点添加到任何簇时,该过程结束。

     

     

    DBSCAN算法伪代码描述:

    输入:数据集D,给定点在邻域内成为核心对象的最小邻域点数:MinPts,邻域半径:Eps  

    输出:簇集合

    首先将数据集D中的所有对象标记为未处理状态 

    for(数据集D中每个对象p) do 

        if (p已经归入某个簇或标记为噪声) then 

             continue; 

        else 

             检查对象p的Eps邻域 NEps(p) ; 

             if (NEps(p)包含的对象数小于MinPts) then 

                      标记对象p为边界点或噪声点; 

             else 

                     标记对象p为核心点,并建立新簇C, 并将p邻域内所有点加入C 

                     for (NEps(p)中所有尚未被处理的对象q)  do 

                           检查其Eps邻域NEps(q),若NEps(q)包含至少MinPts个对象,则将NEps(q)中未归入任何一个簇的对象加入C; 

                     end for 

            end if 

        end if 

    end for

     

     

    时间复杂度:

    (1)DBSCAN的基本时间复杂度是 O(N*找出Eps领域中的点所需要的时间), N是点的个数。最坏情况下时间复杂度是O(N2)

    (2)在低维空间数据中,有一些数据结构如KD树,使得可以有效的检索特定点给定距离内的所有点,时间复杂度可以降低到O(NlogN)

    空间复杂度:低维和高维数据中,其空间都是O(N),对于每个点它只需要维持少量数据,即簇标号和每个点的标识(核心点或边界点或噪音点)

     

    参数设置:

    DBSCAN共包括3个输入数据:数据集D,给定点在邻域内成为核心对象的最小邻域点数:MinPts,邻域半径:Eps,其中Eps和MinPts需要根据具体应用人为设定。

    (1)  Eps的值可以使用绘制k-距离曲线(k-distance graph)方法得当,在k-距离曲线图明显拐点位置为对应较好的参数。若参数设置过小,大部分数据不能聚类;若参数设置过大,多个簇和大部分对象会归并到同一个簇中。

    K-距离:K距离的定义在DBSCAN算法原文中给出了详细解说,给定K邻域参数k,对于数据中的每个点,计算对应的第k个最近邻域距离,并将数据集所有点对应的最近邻域距离按照降序方式排序,称这幅图为排序的k距离图,选择该图中第一个谷值点位置对应的k距离值设定为Eps。一般将k值设为4。

    (2)  MinPts的选取有一个指导性的原则(a rule of thumb),MinPts≥dim+1,其中dim表示待聚类数据的维度。MinPts设置为1是不合理的,因为设置为1,则每个独立点都是一个簇,MinPts≤2时,与层次距离最近邻域结果相同,因此,MinPts必须选择大于等于3的值。若该值选取过小,则稀疏簇中结果由于密度小于MinPts,从而被认为是边界点儿不被用于在类的进一步扩展;若该值过大,则密度较大的两个邻近簇可能被合并为同一簇。因此,该值是否设置适当会对聚类结果造成较大影响。

     

    参考文献:

    [1] https://en.wikipedia.org/wiki/DBSCAN

    [2] EsterM, Kriegel H P, Sander J, et al. A density-based algorithm for discoveringclusters in large spatial databases with noise[C]//Kdd. 1996, 96(34): 226-231.

    [3] https://wenku.baidu.com/view/ce3e324aa8956bec0975e3d5.html

    http://blog.csdn.net/itplus/article/details/10088625

  • 相关阅读:
    ASP.NET存储Session的StateServer
    EasyUI中DataGrid构建复合表头
    EasyUI使用DataGrid向服务器传参
    CentOS 7 U盘安装问题解决
    对指定表的某一列数据合并单元格
    常用的一些sql
    Oracle数据库表空间常用操作
    修改Oracle redo.log文件的大小
    UOJ 非传统题配置手册
    UOJ552 【UNR #4】同构判定鸭【线性代数,哈希】
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9411628.html
Copyright © 2011-2022 走看看