zoukankan      html  css  js  c++  java
  • 机器学习:simple linear iterative clustering (SLIC) 算法

    图像分割是图像处理,计算机视觉领域里非常基础,非常重要的一个应用。今天介绍一种高效的分割算法,即 simple linear iterative clustering (SLIC) 算法,顾名思义,这是一种简单的迭代聚类算法,这个算法发表于 2012 年的 PAMI 上。

    SLIC 算法有几个关键点,
    1: 图像分割块的初始化,每一个图像块都是一个聚类,聚类的中心称为 superpixel,聚类的个数 k 是人为设定的,SLIC 算法先将图像分成大小大小一致的图像 patch,假设图像的像素个数为 N, 需要分割的图像 patch 个数为 k, 那么每个 patch 的大小为 S×S,S=N/k

    2:聚类中心的初始化,在划分好的图像块里,随机采样一个点作为聚类的中心,为了避免采样的初始点是噪声或者是在边缘部分,算法做了一点变化,在采样点附近 3×3 的区域计算临近像素点的梯度,选择临近点中梯度最小的点为聚类中心。

    3: 计算像素点到聚类中心的距离,图像分好块,选择好了每一个图像块的聚类中心,接下来就是计算图像中每一个像素点离聚类中心的距离了,这里与通常的聚类算法不一样,一般的聚类算法会计算像素点离每一个聚类中心的距离,换句话说,每一个聚类中心都要和所有的像素点计算距离,这个明显是费时,而且也是没有必要的,SLIC 算法简化了这一步,只计算每个聚类中心周围 2S×2S 范围类的像素点与该聚类中心的距离,这样可以节省很多的运算时间。

    为了可以衡量距离,这个算法考虑了 空间距离 和 颜色距离 两种:

    dc=(ljli)2+(ajai)2+(bjbi)2
    ds=(xjxi)2+(yjyi)2
    D=(dcm)2+(dsS)2

    算法最后衡量距离的形式如下所示:

    D=(dc)2+(dsS)2m2

    在 CIELAB 颜色空间中,论文中提到 m 的取值范围大概是 [1, 40]

    4:重新聚类,计算完距离之后,每一个像素点都会更新自己所属的图像块,将同一个图像块的像素点取平均,得到新的聚类中心,然后再重复前面的步骤,直到两次聚类中心的距离小于某个阈值。算法的流程图如下所示:

    这里写图片描述

    给出一段Python 的代码:

    # import the necessary packages
    from skimage.segmentation import slic
    from skimage.segmentation import mark_boundaries
    from skimage.util import img_as_float
    from skimage import io
    import matplotlib.pyplot as plt
    
    
    # load the image and convert it to a floating point data type
    image = img_as_float(io.imread("image.jpg"))
    
    # loop over the number of segments
    for numSegments in (100, 200, 300):
        # apply SLIC and extract (approximately) the supplied number
        # of segments
        segments = slic(image, n_segments = numSegments, sigma = 5)
    
        # show the output of SLIC
        fig = plt.figure("Superpixels -- %d segments" % (numSegments))
        ax = fig.add_subplot(1, 1, 1)
        ax.imshow(mark_boundaries(image, segments))
        plt.axis("off")
    
    # show the plots
    plt.show()

    这里写图片描述

    这里写图片描述

  • 相关阅读:
    shell 网络状态查询 ping curl telnet
    shell 命令 rz sz
    shell 命令之 jps
    Python 之 threading
    根据 MySQL 状态优化 ---- 4. 临时表
    根据 MySQL 状态优化 ---- 3. key_buffer_size
    根据 MySQL 状态优化 ---- 2. 连接数
    根据 MySQL 状态优化 ---- 1. 慢查询
    Linux 服务器的网络配置
    Linux 服务器的网络配置
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9412138.html
Copyright © 2011-2022 走看看