zoukankan      html  css  js  c++  java
  • Python: PS 滤镜特效 -- Marble Filter

    本文用 Python 实现 PS 滤镜特效,Marble Filter, 这种滤镜使图像产生不规则的扭曲,看起来像某种玻璃条纹, 具体的代码如下:

    import numpy as np
    import math
    import numpy.matlib
    from skimage import io
    import random
    from skimage import img_as_float
    import matplotlib.pyplot as plt
    
    def Init_arr(): 
        B = 256
        P = np.zeros((B+B+2, 1))
        g1 = np.zeros((B+B+2, 1))
        g2 = np.zeros((B+B+2, 2))
        g3 = np.zeros((B+B+2, 3))
        N_max = 1e6
        for i in range(B+1):
            P[i] = i
            g1[i] = (((math.floor(random.random()*N_max)) % (2*B))-B)*1.0/B
            g2[i, :] = (np.mod((np.floor(np.random.rand(1, 2)*N_max)), (2*B))-B)*1.0/B
            g2[i, :] = g2[i, :] / np.sum(g2[i, :] **2)
            g3[i, :] = (np.mod((np.floor(np.random.rand(1, 3)*N_max)), (2*B))-B)*1.0/B
            g3[i, :] = g3[i, :] / np.sum(g3[i, :] **2)
    
    
        for i in range(B, -1, -1):
            k = P[i]
            j = math.floor(random.random()*N_max) % B
            P [i] = P [j]
            P [j] = k
    
        P[B+1:2*B+2]=P[0:B+1];
        g1[B+1:2*B+2]=g1[0:B+1];
        g2[B+1:2*B+2, :]=g2[0:B+1, :]
        g3[B+1:2*B+2, :]=g3[0:B+1, :]
        P = P.astype(int)
        return P, g1, g2, g3
    
    
    def Noise_2(x_val, y_val, P, g2):
    
        BM=255
        N=4096
    
        t = x_val + N
        bx0 = ((np.floor(t).astype(int)) & BM) + 1
        bx1 = ((bx0 + 1).astype(int) & BM) + 1
        rx0 = t - np.floor(t)
        rx1 = rx0 - 1.0
    
        t = y_val + N
        by0 = ((np.floor(t).astype(int)) & BM) + 1
        by1 = ((bx0 + 1).astype(int) & BM) + 1
        ry0 = t - np.floor(t)
        ry1 = rx0 - 1.0
    
        sx = rx0 * rx0 * (3 - 2.0 * rx0)
        sy = ry0 * ry0 * (3 - 2.0 * ry0)
    
        row, col = x_val.shape
    
        q1 = np.zeros((row, col ,2))
        q2 = q1.copy()
        q3 = q1.copy()
        q4 = q1.copy()
    
        for i in range(row):
            for j in range(col):
                ind_i = P[bx0[i, j]]
                ind_j = P[bx1[i, j]]
                b00 = P[ind_i + by0[i, j]]
                b01 = P[ind_i + by1[i, j]]
                b10 = P[ind_j + by0[i, j]]
                b11 = P[ind_j + by1[i, j]]
    
                q1[i, j, :] = g2[b00, :]
                q2[i, j, :] = g2[b10, :]
                q3[i, j, :] = g2[b01, :]
                q4[i, j, :] = g2[b11, :]
    
        u1 = rx0 * q1[:, :, 0] + ry0 * q1[:, :, 1]
        v1 = rx1 * q2[:, :, 0] + ry1 * q2[:, :, 1]
        a = u1 + sx * (v1 - u1)
    
        u2 = rx0 * q3[:, :, 0] + ry0 * q3[:, :, 1]
        v2 = rx1 * q4[:, :, 0] + ry1 * q4[:, :, 1]
        b = u2 + sx * (v2 - u2)
    
        out = (a + sy * (b - a)) * 1.5     
        return out
    
    
    file_name='D:/Visual Effects/PS Algorithm/4.jpg';
    img=io.imread(file_name)
    
    img = img_as_float(img)
    row, col, channel = img.shape
    
    xScale = 25.0
    yScale = 25.0
    turbulence =0.25
    
    xx = np.arange (col) 
    yy = np.arange (row)
    
    x_mask = numpy.matlib.repmat (xx, row, 1)
    y_mask = numpy.matlib.repmat (yy, col, 1)
    y_mask = np.transpose(y_mask)
    
    x_val = x_mask / xScale
    y_val = y_mask / yScale
    
    Index = np.arange(256)
    
    sin_T=-yScale*np.sin(2*math.pi*(Index)/255*turbulence);
    cos_T=xScale*np.cos(2*math.pi*(Index)/255*turbulence)
    
    P, g1, g2, g3 = Init_arr()
    
    Noise_out = Noise_2(x_val, y_val, P, g2)
    
    Noise_out = 127 * (Noise_out + 1)
    
    Dis = np.floor(Noise_out)
    
    Dis[Dis>255] = 255
    Dis[Dis<0] = 0
    Dis = Dis.astype(int)
    
    img_out = img.copy()
    
    for ii in range(row):
        for jj in range(col):
    
            new_x = jj + sin_T[Dis[ii, jj]]
            new_y = ii + cos_T[Dis[ii, jj]]
    
            if (new_x > 0 and new_x < col-1 and new_y > 0 and new_y < row-1):
                int_x = int(new_x)
                int_y = int(new_y)
    
                img_out[ii, jj, :] = img[int_y, int_x, :]
    
    
    
    plt.figure(1)
    plt.imshow(img)
    plt.axis('off');
    
    plt.figure(2)
    plt.imshow(img_out)
    plt.axis('off');
    
    plt.show();        
    

    图像的效果可以参考我之前写的博客:

    http://blog.csdn.net/matrix_space/article/details/46789607

  • 相关阅读:
    各种算法时空复杂度
    Python文本处理(1)
    数学之路(3)-机器学习(3)-机器学习算法-欧氏距离(3)
    为什么要选择cdn加速
    数据库中操作XML(openXML)
    HDU 3308 LCIS
    Android有效解决加载大图片时内存溢出的问题
    Pathchirp—有效的带宽估计方法(二)
    php三元运算
    C# MVC 自学笔记—4 添加视图
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9412421.html
Copyright © 2011-2022 走看看