zoukankan      html  css  js  c++  java
  • 机器学习: Tensor Flow +CNN 做笑脸识别

    Tensor Flow 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库。节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组,即张量(tensor)。

    这是谷歌开源的一个强大的做深度学习的软件库,提供了C++ 和 Python 接口,下面给出用Tensor Flow 建立CNN 网络做笑脸识别的一个简单用例。

    我们用到的数据库是GENKI4K,这个数据库有4000张图像,首先做人脸检测与剪切,将图像resize到 64×64 的大小,然后用一个 CNN 网络做识别。

    网络的基本结构如下:

    input -> conv 1 -> pool 1 -> conv 2 -> pool 2 -> conv 3 -> pool 3 -> fc 1 -> out

    input -> 64×64
    conv 1 -> filter size: 5×5, output: 60×60
    pool 1 -> filter size: 2×2, output: 30×30
    conv 2 -> filter size: 7×7, output: 24×24
    pool 2 -> filter size: 2×2, output: 12×12
    conv 3 -> filter size: 5×5, output: 8×8
    pool 3 -> filter size: 2×2, output: 4×4
    fc 1 -> hidden nodes: 100, output: 1×100
    out -> 1×2

    import string, os, sys
    import numpy as np
    import matplotlib.pyplot as plt
    import scipy.io
    import random
    import tensorflow as tf
    
    # set the folder path
    dir_name = 'GENKI4K/Feature_Data'
    
    # set the file path
    files = os.listdir(dir_name)
    for f in files:
        print (dir_name + os.sep + f)
    
    file_path = dir_name + os.sep + files[10]
    
    # get the data
    dic_mat = scipy.io.loadmat(file_path)
    data_mat = dic_mat['Face_64']
    file_path2 = dir_name + os.sep + files[15]
    
    dic_label = scipy.io.loadmat(file_path2)
    label_mat = dic_label['Label']
    file_path3 = dir_name + os.sep+files[16]
    
    # get the label
    label = label_mat.ravel()
    
    label_y = np.zeros((4000, 2))
    
    label_y[:, 0] = label
    label_y[:, 1] = 1-label
    
    T_ind=random.sample(range(0, 4000), 4000)
    
    
    # Parameters
    learning_rate = 0.001
    batch_size = 40
    batch_num=4000/batch_size
    train_epoch=100
    
    # Network Parameters
    n_input = 4096 # data input (img shape: 64*64)
    n_classes = 2 # total classes (smile & non-smile)
    dropout = 0.5 # Dropout, probability to keep units
    
    # tf Graph input
    x = tf.placeholder(tf.float32, [None, n_input])
    y = tf.placeholder(tf.float32, [None, n_classes])
    keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)
    
    
    # Create some wrappers for simplicity
    def conv2d(x, W, b, strides=1):
        # Conv2D wrapper, with bias and relu activation
        x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='VALID')
        x = tf.nn.bias_add(x, b)
        return tf.nn.relu(x)
    
    def maxpool2d(x, k=2):
        # MaxPool2D wrapper
        return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],
                              padding='VALID')
    
    # Create model
    def conv_net(x, weights, biases, dropout):
        # Reshape input picture
        x = tf.reshape(x, shape=[-1, 64, 64, 1])
    
        # Convolution Layer
        conv1 = conv2d(x, weights['wc1'], biases['bc1'])
        # Max Pooling (down-sampling)
        conv1 = maxpool2d(conv1, k=2)
    
        # Convolution Layer
        conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])
        # Max Pooling (down-sampling)
        conv2 = maxpool2d(conv2, k=2)
    
        # Convolution Layer
        conv3 = conv2d(conv2, weights['wc3'], biases['bc3'])
        # Max Pooling (down-sampling)
        conv3 = maxpool2d(conv3, k=2)
    
    
        # Fully connected layer
        # Reshape conv2 output to fit fully connected layer input
        fc1 = tf.reshape(conv3, [-1, weights['wd1'].get_shape().as_list()[0]])
        fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])
        fc1 = tf.nn.relu(fc1)
    
        # Apply Dropout
        # fc1 = tf.nn.dropout(fc1, dropout)
    
        # Output, class prediction
        out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])
    
        return out
    
    # Store layers weight & bias
    weights = {
        # 5x5 conv, 1 input, 16 outputs
        'wc1': tf.Variable(tf.random_normal([5, 5, 1, 16])),
        # 7x7 conv, 16 inputs, 8 outputs
        'wc2': tf.Variable(tf.random_normal([7, 7, 16, 8])),
        # 5x5 conv, 8 inputs, 16 outputs
        'wc3': tf.Variable(tf.random_normal([5, 5, 8, 16])),
        # fully connected, 7*7*64 inputs, 1024 outputs
        'wd1': tf.Variable(tf.random_normal([4*4*16, 100])),
        # 1024 inputs, 10 outputs (class prediction)
        'out': tf.Variable(tf.random_normal([100, n_classes]))
    }
    
    biases = {
        'bc1': tf.Variable(tf.random_normal([16])),
        'bc2': tf.Variable(tf.random_normal([8])),
        'bc3': tf.Variable(tf.random_normal([16])),
        'bd1': tf.Variable(tf.random_normal([100])),
        'out': tf.Variable(tf.random_normal([n_classes]))
    }
    
    # Construct model
    pred = conv_net(x, weights, biases, keep_prob)
    
    
    # Define loss and optimizer
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
    
    # Evaluate model
    correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
    # Initializing the variables
    init = tf.initialize_all_variables()
    
    with tf.Session() as sess:
        sess.run(init)
        for epoch in range(0, train_epoch):
            for batch in range (0, batch_num):
                arr_3 = T_ind[batch * batch_size:(batch + 1) * batch_size]
                batch_x = data_mat[arr_3, :]
                batch_y = label_y[arr_3, :]
                # Run optimization op (backprop)
                sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,
                                               keep_prob: dropout})
    
    
    
            # Calculate loss and accuracy
            loss, acc = sess.run([cost, accuracy], feed_dict={x: data_mat,
                                                                  y: label_y,
                                                                  keep_prob: 1.})
    
            print("Epoch: " + str(epoch) + ", Loss= " + 
                      "{:.3f}".format(loss) + ", Training Accuracy= " + 
                      "{:.3f}".format(acc))
    

    100个训练周期的结果:

    这里写图片描述

  • 相关阅读:
    网络故障排除工具 | 快速定位网络故障
    Brocade博科光纤交换机zone配置
    博科Brocade 300光纤交换机配置zone教程
    游戏开发
    第8章 图
    第7章 二叉树
    第6章 树型结构
    第5章 递归
    第4章 字符串、数组和特殊矩阵
    第3章 顺序表的链式存储
  • 原文地址:https://www.cnblogs.com/mtcnn/p/9412448.html
Copyright © 2011-2022 走看看