首先我们来看看future和promise接口整体设计
最顶层的future是jdk的,第二个是netty自定义的future,两个同名,继承关系
看看jdk的future接口
public interface Future<V> { // 取消任务 boolean cancel(boolean mayInterruptIfRunning); // 任务是否取消 boolean isCancelled(); // 任务是否完成 boolean isDone(); // 阻塞的获取执行的结果 V get() throws InterruptedException, ExecutionException; // 在一定时间内-超时-阻塞的获取执行的结果 V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException; }
瞅瞅netty的future接口
public interface Future<V> extends java.util.concurrent.Future<V> { // 是否成功 boolean isSuccess(); // 是否取消 boolean isCancellable(); Throwable cause(); // 添加listener进行回调 Future<V> addListener(GenericFutureListener<? extends Future<? super V>> listener); Future<V> addListeners(GenericFutureListener<? extends Future<? super V>>... listeners); Future<V> removeListener(GenericFutureListener<? extends Future<? super V>> listener); Future<V> removeListeners(GenericFutureListener<? extends Future<? super V>>... listeners); // 阻塞的等待任务执行,如果失败则抛出失败原因的异常 Future<V> sync() throws InterruptedException; // 不响应中断等待异常 Future<V> syncUninterruptibly(); // 阻塞等待任务执行,失败不抛异常 Future<V> await() throws InterruptedException; Future<V> awaitUninterruptibly(); boolean await(long timeout, TimeUnit unit) throws InterruptedException; boolean await(long timeoutMillis) throws InterruptedException; boolean awaitUninterruptibly(long timeout, TimeUnit unit); boolean awaitUninterruptibly(long timeoutMillis); // 马上获取到任务的结果,不阻塞,而jdk的future是阻塞的 V getNow(); // 取消任务执行,如果取消成功,任务会因为 CancellationException 异常而导致失败 // 也就是 isSuccess()==false,同时上面的 cause() 方法返回 CancellationException 的实例。 // mayInterruptIfRunning 说的是:是否对正在执行该任务的线程进行中断(这样才能停止该任务的执行), // 似乎 Netty 中 Future 接口的各个实现类,都没有使用这个参数 @Override boolean cancel(boolean mayInterruptIfRunning); }
netty的future在jdk的基础上扩展了它需要的方法,sync和await的区别我们放到下面看实现类的时候说
同时我们也可以看到,这个future接口跟io操作是无关的
接下来我们看看ChannelFuture接口,接口注释上写的很清楚,我们来看看
* The result of an asynchronous {@link Channel} I/O operation.
* <p>
* All I/O operations in Netty are asynchronous. It means any I/O calls will
* return immediately with no guarantee that the requested I/O operation has
* been completed at the end of the call. Instead, you will be returned with
* a {@link ChannelFuture} instance which gives you the information about the
* result or status of the I/O operation.
* <p>
* A {@link ChannelFuture} is either <em>uncompleted</em> or <em>completed</em>.
* When an I/O operation begins, a new future object is created. The new future
* is uncompleted initially - it is neither succeeded, failed, nor cancelled
* because the I/O operation is not finished yet. If the I/O operation is
* finished either successfully, with failure, or by cancellation, the future is
* marked as completed with more specific information, such as the cause of the
* failure. Please note that even failure and cancellation belong to the
* completed state.
所有io操作都是异步的,一个io操作的调用会立即返回一个带有结果或者状态的io实例。
io操作要么是未完成的,要么是完成的。当它开始时,future会被创建,一开始是未完成的,未完成的时候没有成功、失败或者取消状态
当它是完成的时候,可以是失败或者取消的,失败或者取消原因会被附加到future上。
* <pre> * +---------------------------+ * | Completed successfully | * +---------------------------+ * +----> isDone() = true | * +--------------------------+ | | isSuccess() = true | * | Uncompleted | | +===========================+ * +--------------------------+ | | Completed with failure | * | isDone() = false | | +---------------------------+ * | isSuccess() = false |----+----> isDone() = true | * | isCancelled() = false | | | cause() = non-null | * | cause() = null | | +===========================+ * +--------------------------+ | | Completed by cancellation | * | +---------------------------+ * +----> isDone() = true | * | isCancelled() = true | * +---------------------------+ * </pre>
上面那个状态迁移图很清楚了,在两种过程的时候会有什么状态,我们看看接口
public interface ChannelFuture extends Future<Void> { // 返回future关联的channel Channel channel(); // 重写下面几个方法,修改返回值为channelfuture @Override ChannelFuture addListener(GenericFutureListener<? extends Future<? super Void>> listener); @Override ChannelFuture addListeners(GenericFutureListener<? extends Future<? super Void>>... listeners); @Override ChannelFuture removeListener(GenericFutureListener<? extends Future<? super Void>> listener); @Override ChannelFuture removeListeners(GenericFutureListener<? extends Future<? super Void>>... listeners); @Override ChannelFuture sync() throws InterruptedException; @Override ChannelFuture syncUninterruptibly(); @Override ChannelFuture await() throws InterruptedException; @Override ChannelFuture awaitUninterruptibly(); /** * Returns {@code true} if this {@link ChannelFuture} is a void future and so not allow to call any of the * following methods: * <ul> * <li>{@link #addListener(GenericFutureListener)}</li> * <li>{@link #addListeners(GenericFutureListener[])}</li> * <li>{@link #await()}</li> * <li>{@link #await(long, TimeUnit)} ()}</li> * <li>{@link #await(long)} ()}</li> * <li>{@link #awaitUninterruptibly()}</li> * <li>{@link #sync()}</li> * <li>{@link #syncUninterruptibly()}</li> * </ul> 标记该future是void的,使不能使用上面的方法 */ boolean isVoid(); }
netty其实是强烈建议直接通过添加监听器的方式来获取io操作结果,或者进行后续操作的,ChannelFuture可以增加或者删除一个多个 GenericFutureListener,它定义如下
public interface GenericFutureListener<F extends Future<?>> extends EventListener { void operationComplete(F future) throws Exception; }
执行完后会回调 operationComplete方法
注意一点,不要在ChannelHandler中调用ChannelFuture的await方法,会导致死锁。这是因为发起io操作后,由io线程负责异步通知发起io操作的用户线程,如果io线程和用户线程是同一个的话,就会导致io线程等待自己通知操作完成,这就会导致死锁,自己挂死自己。
我们继续看promise接口,
public interface Promise<V> extends Future<V> { // 标记该future成功及设置结果,并通知所有listener // 如果失败的话抛异常 Promise<V> setSuccess(V result); // 和setsuccess一样,只是失败的话返回false boolean trySuccess(V result); // 标记future失败,然后通知listener Promise<V> setFailure(Throwable cause); boolean tryFailure(Throwable cause); // 标记该future 不可被取消 boolean setUncancellable(); // 下面跟ChannelFuture一样,都是覆盖重写方法 @Override Promise<V> addListener(GenericFutureListener<? extends Future<? super V>> listener); @Override Promise<V> addListeners(GenericFutureListener<? extends Future<? super V>>... listeners); @Override Promise<V> removeListener(GenericFutureListener<? extends Future<? super V>> listener); @Override Promise<V> removeListeners(GenericFutureListener<? extends Future<? super V>>... listeners); @Override Promise<V> await() throws InterruptedException; @Override Promise<V> awaitUninterruptibly(); @Override Promise<V> sync() throws InterruptedException; @Override Promise<V> syncUninterruptibly(); }
Promise是可写的future,Future本身并没有写操作相关的接口,netty通过Promise对其进行扩展,用于设置io操作的结果。Promise 实例内部是一个任务,任务的执行往往是异步的,通常是一个线程池来处理任务。Promise 提供的 setSuccess(V result) 或 setFailure(Throwable t) 将来会被某个执行任务的线程在执行完成以后调用,同时那个线程在调用 setSuccess(result) 或 setFailure(t) 后会回调 listeners 的回调函数(当然,回调的具体内容不一定要由执行任务的线程自己来执行,它可以创建新的线程来执行,也可以将回调任务提交到某个线程池来执行)。而且,一旦 setSuccess(...) 或 setFailure(...) 后,那些 await() 或 sync() 的线程就会从等待中返回。
接下来我们看看ChannelPromise
public interface ChannelPromise extends ChannelFuture, Promise<Void> { @Override Channel channel();
@Override ChannelPromise setSuccess(Void result); ChannelPromise setSuccess(); boolean trySuccess(); @Override ChannelPromise setFailure(Throwable cause);
@Override ChannelPromise addListener(GenericFutureListener<? extends Future<? super Void>> listener); @Override ChannelPromise addListeners(GenericFutureListener<? extends Future<? super Void>>... listeners); @Override ChannelPromise removeListener(GenericFutureListener<? extends Future<? super Void>> listener); @Override ChannelPromise removeListeners(GenericFutureListener<? extends Future<? super Void>>... listeners);
@Override ChannelPromise sync() throws InterruptedException; @Override ChannelPromise syncUninterruptibly(); @Override ChannelPromise await() throws InterruptedException; @Override ChannelPromise awaitUninterruptibly(); /** * Returns a new {@link ChannelPromise} if {@link #isVoid()} returns {@code true} otherwise itself. */ ChannelPromise unvoid(); }
看方法其实很清楚,基本都是覆写综合了ChannelFuture和Promise接口的,就返回值变了,看看我们一开始的类继承图,ChannelPromise 接口同时继承了 ChannelFuture 和 Promise,最终继承的都是Future接口,接下来我们看看具体的实现类DefaultPromise吧
public class DefaultPromise<V> extends AbstractFuture<V> implements Promise<V> { // 为了后面操作成功后通过cas来保存结果到result字段 @SuppressWarnings("rawtypes") private static final AtomicReferenceFieldUpdater<DefaultPromise, Object> RESULT_UPDATER = AtomicReferenceFieldUpdater.newUpdater(DefaultPromise.class, Object.class, "result"); // result为null的时候默认值 private static final Object SUCCESS = new Object(); // 操作成功后cas比对的值 private static final Object UNCANCELLABLE = new Object(); // 保存执行的结果 private volatile Object result; // 线程执行器 private final EventExecutor executor; // 监听者 private Object listeners; /** * Threading - synchronized(this). We are required to hold the monitor to use Java's underlying wait()/notifyAll(). */ // 等待这个 promise 的线程数(调用sync()/await()进行等待的线程数量) private short waiters; /** * Threading - synchronized(this). We must prevent concurrent notification and FIFO listener notification if the * executor changes. */ // 是否唤醒正在等待线程,用于防止重复执行唤醒,不然会重复执行 listeners 的回调方法 private boolean notifyingListeners; .... }
属性看完了,我们可以看看它主要的方法
@Override public Promise<V> setSuccess(V result) { if (setSuccess0(result)) { notifyListeners(); return this; } throw new IllegalStateException("complete already: " + this); } @Override public boolean trySuccess(V result) { if (setSuccess0(result)) { notifyListeners(); return true; } return false; } @Override public Promise<V> setFailure(Throwable cause) { if (setFailure0(cause)) { notifyListeners(); return this; } throw new IllegalStateException("complete already: " + this, cause); } @Override public boolean tryFailure(Throwable cause) { if (setFailure0(cause)) { notifyListeners(); return true; } return false; }
set和try的区别就是返回值不一样而已,我们看看底层的方法 setSuccess0
private boolean setSuccess0(V result) { return setValue0(result == null ? SUCCESS : result); } private boolean setValue0(Object objResult) { if (RESULT_UPDATER.compareAndSet(this, null, objResult) || RESULT_UPDATER.compareAndSet(this, UNCANCELLABLE, objResult)) { checkNotifyWaiters(); return true; } return false; }
就是通过cas来把objResult保存到result属性上,然后Notify其他线程。其他方法都差不多,可以比对看看
我们再看个await方法
public Promise<V> await() throws InterruptedException { if (isDone()) { return this; } if (Thread.interrupted()) { throw new InterruptedException(toString()); } checkDeadLock(); synchronized (this) { while (!isDone()) { incWaiters(); try { wait(); } finally { decWaiters(); } } } return this; }
如果当前Promise已被设置,则返回;如果碰到线程中断则响应中断;检查死锁,由于在IO线程中调用Promise的await方法或者sync方法会导致死锁,前面说过的,所以需要检验保护,判定当前线程是否是io线程;同步锁定当前Promise对象,循环判定是否设置完成,使用循环是避免伪唤醒,防止线程 被意外唤醒导致功能异常。
接下来我们顺便也看下sync方法
@Override public Promise<V> sync() throws InterruptedException { await(); rethrowIfFailed(); return this; }
首先调用await方法,然后看是否需要抛出异常,如果任务失败的话就重新抛出异常,这也是两方法区别了。
DefaultChannelPromise实现我们就不看了,基本都是基于DefaultPromise的,只是返回值都是 ChannelPromise而已。
下面我们来写个例子吧
public class ChannelPromiseExample extends Thread{ private static final Object object = new Object(); public static void main(String[] args) { final DefaultEventExecutor executor = new DefaultEventExecutor(); final Promise<Integer> promise = executor.newPromise(); // 任务seccess或者failure来回调operationComplete 方法 promise.addListener(new GenericFutureListener<Future<? super Integer>>() { @Override public void operationComplete(Future<? super Integer> future) throws Exception { System.out.println(Thread.currentThread().getName() + " 第一个监听器"); if (future.isSuccess()) { System.out.println("任务成功,result:" + future.get()); } else { System.out.println("任务失败,result:" + future.cause()); } } }).addListener(new GenericFutureListener<Future<? super Integer>>() { @Override public void operationComplete(Future<? super Integer> future) throws Exception { System.out.println(Thread.currentThread().getName() + " 第二个监听器"); } }); // 提交任务 executor.execute(new Runnable() { @Override public void run() { try { Thread.sleep(2000); } catch (InterruptedException e) { e.printStackTrace(); } //可以设置成功或者失败 //promise.setSuccess(1); promise.setFailure(new Throwable("FAILURE")); } }); try { System.out.println("promise wait begin"); //promise.sync(); promise.await(); System.out.println("promise wait end"); } catch (InterruptedException e) { e.printStackTrace(); } finally { executor.shutdown(); } } }
可以体会下await和sync的区别