zoukankan      html  css  js  c++  java
  • 最大生成树与最小生成树

    hdu4786

    Fibonacci Tree

    Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1127    Accepted Submission(s): 324


    Problem Description
      Coach Pang is interested in Fibonacci numbers while Uncle Yang wants him to do some research on Spanning Tree. So Coach Pang decides to solve the following problem:
      Consider a bidirectional graph G with N vertices and M edges. All edges are painted into either white or black. Can we find a Spanning Tree with some positive Fibonacci number of white edges?
    (Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
     

    Input
      The first line of the input contains an integer T, the number of test cases.
      For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
      Then M lines follow, each contains three integers u, v (1 <= u,v <= N, u<> v) and c (0 <= c <= 1), indicating an edge between u and v with a color c (1 for white and 0 for black).
     

    Output
      For each test case, output a line “Case #x: s”. x is the case number and s is either “Yes” or “No” (without quotes) representing the answer to the problem.
     

    Sample Input
    2 4 4 1 2 1 2 3 1 3 4 1 1 4 0 5 6 1 2 1 1 3 1 1 4 1 1 5 1 3 5 1 4 2 1
     

    Sample Output
    Case #1: Yes Case #2: No
     
    题意:给出一个无向连通图,边有两种颜色黑色和白色,黑色的权值是0,白色的权值是1,问是否存在一棵树,该树的边权和是斐波那契数;
    分析:首先求出最小生成树(权值和s1)和最大生成树(权值和s2),则一定存在所有的可能(s)满足s1<=s<=s2,只要在s1和s2范围内有斐波那契数,就行,至于怎样理解,也很好说,其实可以这样来理解,对于一棵树由于黑色和白色边两种,我们在任意一种状态,我们可以取出一条黑边然后用一条白边来取代这条黑边并且保证这棵树是联通的。
    程序:
    #include"stdio.h"
    #include"string.h"
    #include"stdlib.h"
    #define M 200000
    struct st
    {
        int u,v,w;
    }edge[M];
    int f[M];
    int cmp1(const void *a,const void *b)
    {
        return (*(struct st*)a).w-(*(struct st *)b).w;
    }
    int cmp2(const void *a,const void *b)
    {
        return (*(struct st*)b).w-(*(struct st *)a).w;
    }
    int finde(int x)
    {
        if(x!=f[x])
            f[x]=finde(f[x]);
        return f[x];
    }
    void make(int a,int b)
    {
        int x=finde(a);
        int y=finde(b);
        if(x!=y)
            f[x]=y;
    }
    int main()
    {
        int h[44];
        h[1]=1;
        h[2]=2;
        int i;
        for(i=3;i<=30;i++)
            h[i]=h[i-1]+h[i-2];
        int w;
        scanf("%d",&w);
        int kk=1;
        while(w--)
        {
            int n,m;
            scanf("%d%d",&n,&m);
            for(i=1;i<=n;i++)
                f[i]=i;
            for(i=0;i<m;i++)
            {
                int a,b,c;
                scanf("%d%d%d",&a,&b,&c);
                make(a,b);
                edge[i].u=a;
                edge[i].v=b;
                edge[i].w=c;
            }
            int k=0;
            for(i=1;i<=n;i++)
            {
                if(f[i]==i)
                    k++;
            }
            if(k>1)
            {
                printf("Case #%d: No
    ",kk++);
                continue;
            }
                
            qsort(edge,m,sizeof(edge[0]),cmp1);
            for(i=1;i<=n;i++)
                f[i]=i;
            int sum1=0;
            for(i=0;i<m;i++)
            {
                int u=edge[i].u;
                int v=edge[i].v;
                if(finde(u)!=finde(v))
                {
                    sum1+=edge[i].w;
                    make(u,v);
                }
            }
    
            qsort(edge,m,sizeof(edge[0]),cmp2);
            for(i=1;i<=n;i++)
                f[i]=i;
            int sum2=0;
            for(i=0;i<m;i++)
            {
                int u=edge[i].u;
                int v=edge[i].v;
                if(finde(u)!=finde(v))
                {
                    sum2+=edge[i].w;
                    make(u,v);
                }
            }
            //printf("%d %d
    ",sum1,sum2);
            int flag=0;
            for(i=1;i<=28;i++)
            {
                if(h[i]>=sum1&&h[i]<=sum2)
                    flag++;
            }
            if(flag)
                printf("Case #%d: Yes
    ",kk++);
            else
                printf("Case #%d: No
    ",kk++);
        }
    }
    



  • 相关阅读:
    CAD中导入.pat文件
    使用solid works 助力NBA | 操作案例
    Java关键字---this的由来和其三大作用
    关于solid works中的:动态链接库(DLL)初始化例失败的解决方法
    基于51单片机的keli安装方法
    wintc的安装方法
    文件处理2
    文件处理1
    CAD绘制篮球教程
    数据分析之Numpy
  • 原文地址:https://www.cnblogs.com/mypsq/p/4348198.html
Copyright © 2011-2022 走看看