zoukankan      html  css  js  c++  java
  • 二分图最大匹配(匈牙利算法)

    http://poj.org/problem?id=1274

    The Perfect Stall
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 17672   Accepted: 8060

    Description

    Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls, but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and, of course, a cow may be only assigned to one stall. 
    Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible. 

    Input

    The input includes several cases. For each case, the first line contains two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. Each of the following N lines corresponds to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow.

    Output

    For each case, output a single line with a single integer, the maximum number of milk-producing stall assignments that can be made.

    Sample Input

    5 5
    2 2 5
    3 2 3 4
    2 1 5
    3 1 2 5
    1 2 
    

    Sample Output

    4
    题意:

    一只牛对应一个房间,一个房间住一只牛

    问最大的匹配数:

    方法一:

    最大流

    #include"string.h"
    #include"stdio.h"
    #include"iostream"
    #include"queue"
    #define M 10009
    #define inf 999999999
    using namespace std;
    struct st
    {
        int u,v,w,next;
    }edge[M];
    int t,head[M],use[M],pre[M],dis[M];
    void init()
    {
        t=0;
        memset(head,-1,sizeof(head));
    }
    void add(int u,int v,int w)
    {
        edge[t].u=u;
        edge[t].v=v;
        edge[t].w=w;
        edge[t].next=head[u];
        head[u]=t++;
    
        edge[t].u=v;
        edge[t].v=u;
        edge[t].w=0;
        edge[t].next=head[v];
        head[v]=t++;
    }
    int BFS(int S,int T)
    {
        int i;
        queue<int>q;
        memset(dis,-1,sizeof(dis));
        dis[S]=0;
        q.push(S);
        while(!q.empty())
        {
            int u=q.front();
            q.pop();
            for(i=head[u];i!=-1;i=edge[i].next)
            {
                int v=edge[i].v;
                if(edge[i].w&&dis[v]==-1)
                {
                    dis[v]=dis[u]+1;
                    if(v==T)
                        return 1;
                    q.push(v);
                }
            }
        }
        return 0;
    }
    int DFS(int S,int a,int T)
    {
        if(S==T)
            return a;
        for(int i=head[S];i!=-1;i=edge[i].next)
        {
            int v=edge[i].v;
            if(edge[i].w&&dis[v]==dis[S]+1)
            {
                int tt=DFS(v,min(a,edge[i].w),T);
                if(tt)
                {
                    edge[i].w-=tt;
                    edge[i^1].w+=tt;
                    return tt;
                }
            }
        }
        return 0;
    }
    int solve(int S,int T)
    {
        int ans=0;
        while(BFS(S,T))
        {
            while(int tt=DFS(S,inf,T))
                ans+=tt;
        }
        return ans;
    }
    <pre name="code" class="cpp">/*int BFS(int S,int T)
    {
        queue<int>q;
        memset(pre,-1,sizeof(pre));
        memset(dis,-1,sizeof(dis));
        dis[S]=0;
        q.push(S);
        int i;
        while(!q.empty())
        {
            int u=q.front();
            q.pop();
            for(i=head[u];i!=-1;i=edge[i].next)
            {
                int v=edge[i].v;
                if(edge[i].w&&dis[v]==-1)
                {
                    pre[v]=i;
                    dis[v]=dis[u]+1;
                    if(v==T)
                    {
                        return 1;
                    }
                    q.push(v);
                }
            }
        }
        return 0;
    }
    int solve(int S,int T)
    {
        int ans=0,i;
        while(BFS(S,T))
        {
            int mini=inf;
            for(i=pre[T];i!=-1;i=pre[edge[i].u])
            {
                mini=min(mini,edge[i].w);
            }
            for(i=pre[T];i!=-1;i=pre[edge[i].u])
            {
                edge[i].w-=mini;
                edge[i^1].w+=mini;
            }
            ans+=mini;
        }
        return ans;
    }*/

    
    
    int main()
    {
        int n,m,i,k;
        while(scanf("%d%d",&n,&m)!=-1)
        {
            init();
            for(i=1;i<=n;i++)
            {
                scanf("%d",&k);
                while(k--)
                {
                    int b;
                    scanf("%d",&b);
                    add(i,b+n,1);
                }
            }
            for(i=1;i<=n;i++)
                add(0,i,1);
            for(i=1;i<=m;i++)
                add(i+n,m+n+1,1);
            int ans=solve(0,m+n+1);
            printf("%d
    ",ans);
        }
        return 0;
    }
    方法二:

    二分图最大匹配

    程序:

    #include"string.h"
    #include"stdio.h"
    #include"iostream"
    #include"queue"
    #define M 10009
    #define inf 999999999
    using namespace std;
    struct st
    {
        int u,v,next;
    }edge[M];
    int head[M],use[M],t,x[M],y[M];
    void init()
    {
        t=0;
        memset(head,-1,sizeof(head));
    }
    void add(int u,int v)
    {
        edge[t].u=u;
        edge[t].v=v;
        edge[t].next=head[u];
        head[u]=t++;
    }
    int finde(int u)
    {
        for(int i=head[u];i!=-1;i=edge[i].next)
        {
            int v=edge[i].v;
            if(!use[v])
            {
                use[v]=1;
                if(!y[v]||finde(y[v]))
                {
                    use[v]=1;
                    y[v]=u;
                    x[u]=v;
                    return 1;
                }
            }
        }
        return 0;
    }
    int main()
    {
        int n,m,i,k;
        while(scanf("%d%d",&n,&m)!=-1)
        {
            init();
            for(i=1;i<=n;i++)
            {
                scanf("%d",&k);
                while(k--)
                {
                    int b;
                    scanf("%d",&b);
                    add(i,b+n);
                }
            }
            int ans=0;
            memset(x,0,sizeof(x));
            memset(y,0,sizeof(y));
            for(i=1;i<=n;i++)
            {
                if(!x[i])
                {
                    memset(use,0,sizeof(use));
                    ans+=finde(i);
                }
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
    



  • 相关阅读:
    研赛02939有理多项式的根的问题
    [真题解析]广州大学2010年高等代数05(01)正定矩阵的和的逆不等于逆的和
    [真题解析]广州大学2011年高等代数考研试题参考解答04(考得太多的)稍微做下初等列变换的循环矩阵的行列式
    [真题解析]广州大学2011年高等代数考研试题参考解答02跟着命题人思路走, 第2问定要用上第1问哦
    [真题解析]广州大学2012年高等代数考研试题参考解答03用反证法推理时定要有理有据!
    [真题解析]广州大学2011年高等代数考研试题参考解答09子空间和的正交补等于正交补的交
    先进计算产业发展 白皮书
    《审美教育书简》笔记
    《欢迎来到你的世界:建筑如何塑造我们的情感、认知和幸福》笔记
    《论美国的民主》笔记
  • 原文地址:https://www.cnblogs.com/mypsq/p/4348223.html
Copyright © 2011-2022 走看看