zoukankan      html  css  js  c++  java
  • 求平面最近点对(分治与递归,注:最远点对用凸包求)

    Quoit Design

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 36793    Accepted Submission(s): 9552


    Problem Description
    Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some toys, with all the toys encircled awarded.
    In the field of Cyberground, the position of each toy is fixed, and the ring is carefully designed so it can only encircle one toy at a time. On the other hand, to make the game look more attractive, the ring is designed to have the largest radius. Given a configuration of the field, you are supposed to find the radius of such a ring.

    Assume that all the toys are points on a plane. A point is encircled by the ring if the distance between the point and the center of the ring is strictly less than the radius of the ring. If two toys are placed at the same point, the radius of the ring is considered to be 0.
     
    Input
    The input consists of several test cases. For each case, the first line contains an integer N (2 <= N <= 100,000), the total number of toys in the field. Then N lines follow, each contains a pair of (x, y) which are the coordinates of a toy. The input is terminated by N = 0.
     
    Output
    For each test case, print in one line the radius of the ring required by the Cyberground manager, accurate up to 2 decimal places. 
     
    Sample Input
    2 0 0 1 1 2 1 1 1 1 3 -1.5 0 0 0 0 1.5 0
     
    Sample Output
    0.71 0.00 0.75

     分析:分治与递归

    程序:

    #include<cmath>   
    #include<algorithm>   
    using namespace std;  
    int n;  
    struct node  
    {  
      double x;  
      double y;  
    }p[100005];  
    int a[100005];  
    double cmpx(node a,node b)  
    {  
      return a.x<b.x;  
    }  
    double cmpy(int a,int b)  
    {  
      return p[a].y<p[b].y;  
    }  
    double min(double a,double b)  
    {  
      return a<b?a:b;  
    }  
    double dis(node a,node b)  
    {  
      return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));  
    }  
    double find(int l,int r)  
    {  
         if(r==l+1)  
          return dis(p[l],p[r]);  
         if(l+2==r)  
          return min(dis(p[l],p[r]),min(dis(p[l],p[l+1]),dis(p[l+1],p[r])));  
         int mid=(l+r)>>1;  
         double ans=min(find(l,mid),find(mid+1,r));  
         int i,j,cnt=0;  
         for(i=l;i<=r;i++)  
         {  
           if(p[i].x>=p[mid].x-ans&&p[i].x<=p[mid].x+ans)  
              a[cnt++]=i;  
         }  
         sort(a,a+cnt,cmpy);  
         for(i=0;i<cnt;i++)  
         {  
           for(j=i+1;j<cnt;j++)  
           {  
             if(p[a[j]].y-p[a[i]].y>=ans) break;  
             ans=min(ans,dis(p[a[i]],p[a[j]]));  
           }  
         }   
         return ans;  
    }  
    int main()  
    {  
        int i;  
         
        while(scanf("%d",&n)!=EOF)  
        {  
          if(!n) break;  
          for(i=0;i<n;i++)  
           scanf("%lf %lf",&p[i].x,&p[i].y);  
          sort(p,p+n,cmpx);  
          printf("%.2lf%
    ",find(0,n-1)/2);  
        }  
        return 0;  
    }  
    

      

  • 相关阅读:
    人民币汇率
    世界金融危机史
    选题==》方法
    宏观经济学理论
    央行货币政策执行报告
    货币政策科普
    几个数据库使用记录 & DPD-GMM调整到通过检验
    OBOR数据处理
    stata几个常用命令
    个人闭包理解(结合代码)
  • 原文地址:https://www.cnblogs.com/mypsq/p/4480703.html
Copyright © 2011-2022 走看看