zoukankan      html  css  js  c++  java
  • OpenCV颜色直方图

    #include "stdafx.h"
    
    void myShowHist(IplImage* image1,IplImage* image2);
    IplImage* cvShowHist(IplImage* src);
    
    
    
    int main()
    {
      //对彩色图像进行均衡化
    
      IplImage * image= cvLoadImage("E:\C_VC_code\Text_Photo\girl004.jpg");
      IplImage* eqlimage=cvCreateImage(cvGetSize(image),image->depth,3);
    
      //信道分离
      IplImage* redImage=cvCreateImage(cvGetSize(image),image->depth,1);
      IplImage* greenImage=cvCreateImage(cvGetSize(image),image->depth,1);
      IplImage* blueImage=cvCreateImage(cvGetSize(image),image->depth,1);
    
      cvSplit(image,blueImage,greenImage,redImage,NULL);//用 cvSplit 函数分解图像到单个色彩通道上
    
      /*
      cvNamedWindow("red",CV_WINDOW_AUTOSIZE);
      cvNamedWindow("green",CV_WINDOW_AUTOSIZE);
      cvNamedWindow("blue",CV_WINDOW_AUTOSIZE);
    
      cvShowImage("red",redImage);
      cvShowImage("green",greenImage);
      cvShowImage("blue",blueImage);
      */
    
      //cvEqualizeHist()是适用于灰度图象直方图均衡化,所以必须先将图片分解到单通道上
      //分别均衡化每个信道
      cvEqualizeHist(redImage,redImage);
      cvEqualizeHist(greenImage,greenImage); 
      cvEqualizeHist(blueImage,blueImage); 
      
      /*
      cvNamedWindow("red2",CV_WINDOW_AUTOSIZE);
      cvNamedWindow("green2",CV_WINDOW_AUTOSIZE);
      cvNamedWindow("blue2",CV_WINDOW_AUTOSIZE);
    
      cvShowImage("red2",redImage);
      cvShowImage("green2",greenImage);
      cvShowImage("blue2",blueImage);
      */
      
      //信道合并
      cvMerge(blueImage,greenImage,redImage,NULL,eqlimage);
    
      //显示图片和直方图
      cvNamedWindow( "source", 1 );
      cvShowImage("source",image);
    
      cvNamedWindow( "Equalized", 1 );
      cvShowImage("Equalized",eqlimage);
      cvSaveImage("equalized.jpg",eqlimage);
    
      myShowHist(image,eqlimage);
    
      cvWaitKey(0);
    
      cvDestroyWindow("source");
      cvDestroyWindow("result");
      cvReleaseImage( &image );
      cvReleaseImage( &eqlimage );
      
    }
    
    void myShowHist(IplImage* image1,IplImage* image2)
    {
      IplImage* hist_image1=cvShowHist(image1);
      IplImage* hist_image2=cvShowHist(image2);
    
      cvNamedWindow( "H-S Histogram1", 1 );
      cvShowImage( "H-S Histogram1", hist_image1 );
    
      cvNamedWindow( "H-S Histogram2", 1 );
      cvShowImage( "H-S Histogram2", hist_image2 );
    
      cvSaveImage("Histogram1.jpg",hist_image1);
      cvSaveImage("Histogram2.jpg",hist_image2);
    }
    
    IplImage* cvShowHist(IplImage* src)
    {
      IplImage* hsv = cvCreateImage( cvGetSize(src), 8, 3 );
      IplImage* h_plane = cvCreateImage( cvGetSize(src), 8, 1 );
      IplImage* s_plane = cvCreateImage( cvGetSize(src), 8, 1 );
      IplImage* v_plane = cvCreateImage( cvGetSize(src), 8, 1 );
      IplImage* planes[] = { h_plane, s_plane };
     
      /** H 分量划分为16个等级,S分量划分为8个等级 */
      int h_bins = 16, s_bins = 8;
      int hist_size[] = {h_bins, s_bins};
     
      /** H 分量的变化范围 */
      float h_ranges[] = { 0, 180 }; 
     
      /** S 分量的变化范围*/
      float s_ranges[] = { 0, 255 };
      float* ranges[] = { h_ranges, s_ranges };
     
      /** 输入图像转换到HSV颜色空间 */
      cvCvtColor( src, hsv, CV_BGR2HSV );
      cvCvtPixToPlane( hsv, h_plane, s_plane, v_plane, 0 );
     
      /** 创建直方图,二维, 每个维度上均分 */
      CvHistogram * hist = cvCreateHist( 2, hist_size, CV_HIST_ARRAY, ranges, 1 );
      /** 根据H,S两个平面数据统计直方图 */
      cvCalcHist( planes, hist, 0, 0 );
     
      /** 获取直方图统计的最大值,用于动态显示直方图 */
      float max_value;
      cvGetMinMaxHistValue( hist, 0, &max_value, 0, 0 );
     
     
      /** 设置直方图显示图像 */
      int height = 240;
      int width = (h_bins*s_bins*6);
      IplImage* hist_img = cvCreateImage( cvSize(width,height), 8, 3 );
      cvZero( hist_img );
     
      /** 用来进行HSV到RGB颜色转换的临时单位图像 */
      IplImage * hsv_color = cvCreateImage(cvSize(1,1),8,3);
      IplImage * rgb_color = cvCreateImage(cvSize(1,1),8,3);
      int bin_w = width / (h_bins * s_bins);
      for(int h = 0; h < h_bins; h++)
      {
        for(int s = 0; s < s_bins; s++)
        {
          int i = h*s_bins + s;
          /** 获得直方图中的统计次数,计算显示在图像中的高度 */
          float bin_val = cvQueryHistValue_2D( hist, h, s );
          int intensity = cvRound(bin_val*height/max_value);
     
          /** 获得当前直方图代表的颜色,转换成RGB用于绘制 */
          cvSet2D(hsv_color,0,0,cvScalar(h*180.f / h_bins,s*255.f/s_bins,255,0));
          cvCvtColor(hsv_color,rgb_color,CV_HSV2BGR);
          CvScalar color = cvGet2D(rgb_color,0,0);
     
          cvRectangle( hist_img, cvPoint(i*bin_w,height),
            cvPoint((i+1)*bin_w,height - intensity),
            color, -1, 8, 0 );
        }
      }
    
      return hist_img;
    
    }
  • 相关阅读:
    算法分析之最小子段求和
    算法分析之最大子段求和(二)
    算法分析之爬楼梯问题
    .net编码规则
    tensorflow mnist
    The tensorflow simplest calculate
    python opencv
    english
    opencv 图片识别
    随机概率
  • 原文地址:https://www.cnblogs.com/mypsq/p/5005043.html
Copyright © 2011-2022 走看看