zoukankan      html  css  js  c++  java
  • 生成器

    https://www.liaoxuefeng.com/wiki/1016959663602400/1017318207388128

    通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

    所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

    要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

    >>> L = [x * x for x in range(10)]
    >>> L
    [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
    >>> g = (x * x for x in range(10))
    >>> g
    <generator object <genexpr> at 0x1022ef630>
    

    创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

    我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

    如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

    >>> next(g)
    0
    >>> next(g)
    1
    >>> next(g)
    4
    >>> next(g)
    9
    >>> next(g)
    16
    >>> next(g)
    25
    >>> next(g)
    36
    >>> next(g)
    49
    >>> next(g)
    64
    >>> next(g)
    81
    >>> next(g)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    StopIteration
    

    我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

    当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

    >>> g = (x * x for x in range(10))
    >>> for n in g:
    ...     print(n)
    ... 
    0
    1
    4
    9
    16
    25
    36
    49
    64
    81
    

    所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

    generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

    比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

    1, 1, 2, 3, 5, 8, 13, 21, 34, ...

    斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

    def fib(max):
        n, a, b = 0, 0, 1
        while n < max:
            print(b)
            a, b = b, a + b
            n = n + 1
        return 'done'
    

    注意,赋值语句:

    a, b = b, a + b
    

    相当于:

    t = (b, a + b) # t是一个tuple
    a = t[0]
    b = t[1]
    

    但不必显式写出临时变量t就可以赋值。

    上面的函数可以输出斐波那契数列的前N个数:

    >>> fib(6)
    1
    1
    2
    3
    5
    8
    'done'
    

    仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

    也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

    def fib(max):
        n, a, b = 0, 0, 1
        while n < max:
            yield b
            a, b = b, a + b
            n = n + 1
        return 'done'
    

    这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

    >>> f = fib(6)
    >>> f
    <generator object fib at 0x104feaaa0>
    

    这里,最难理解的就是generator和函数的执行流程不一样。函数是顺序执行,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

    举个简单的例子,定义一个generator,依次返回数字1,3,5:

    def odd():
        print('step 1')
        yield 1
        print('step 2')
        yield(3)
        print('step 3')
        yield(5)
    

    调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

    >>> o = odd()
    >>> next(o)
    step 1
    1
    >>> next(o)
    step 2
    3
    >>> next(o)
    step 3
    5
    >>> next(o)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    StopIteration
    

    可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

    回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

    同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

    >>> for n in fib(6):
    ...     print(n)
    ...
    1
    1
    2
    3
    5
    8
    

    但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

    >>> g = fib(6)
    >>> while True:
    ...     try:
    ...         x = next(g)
    ...         print('g:', x)
    ...     except StopIteration as e:
    ...         print('Generator return value:', e.value)
    ...         break
    ...
    g: 1
    g: 1
    g: 2
    g: 3
    g: 5
    g: 8
    Generator return value: done
    

    关于如何捕获错误,后面的错误处理还会详细讲解。

    练习

    杨辉三角定义如下:

              1
             / \
            1   1
           / \ / \
          1   2   1
         / \ / \ / \
        1   3   3   1
       / \ / \ / \ / \
      1   4   6   4   1
     / \ / \ / \ / \ / \
    1   5   10  10  5   1
    

    把每一行看做一个list,试写一个generator,不断输出下一行的list:

    # -*- coding: utf-8 -*-
    
    def triangles():
    
    # 期待输出:
    # [1]
    # [1, 1]
    # [1, 2, 1]
    # [1, 3, 3, 1]
    # [1, 4, 6, 4, 1]
    # [1, 5, 10, 10, 5, 1]
    # [1, 6, 15, 20, 15, 6, 1]
    # [1, 7, 21, 35, 35, 21, 7, 1]
    # [1, 8, 28, 56, 70, 56, 28, 8, 1]
    # [1, 9, 36, 84, 126, 126, 84, 36, 9, 1]
    n = 0
    results = []
    for t in triangles():
        results.append(t)
        n = n + 1
        if n == 10:
            break
    
    for t in results:
        print(t)
    
    if results == [
        [1],
        [1, 1],
        [1, 2, 1],
        [1, 3, 3, 1],
        [1, 4, 6, 4, 1],
        [1, 5, 10, 10, 5, 1],
        [1, 6, 15, 20, 15, 6, 1],
        [1, 7, 21, 35, 35, 21, 7, 1],
        [1, 8, 28, 56, 70, 56, 28, 8, 1],
        [1, 9, 36, 84, 126, 126, 84, 36, 9, 1]
    ]:
        print('测试通过!')
    else:
        print('测试失败!')
    

    小结

    generator是非常强大的工具,在Python中,可以简单地把列表生成式改成generator,也可以通过函数实现复杂逻辑的generator。

    要理解generator的工作原理,它是在for循环的过程中不断计算出下一个元素,并在适当的条件结束for循环。对于函数改成的generator来说,遇到return语句或者执行到函数体最后一行语句,就是结束generator的指令,for循环随之结束。

    请注意区分普通函数和generator函数,普通函数调用直接返回结果:

    >>> r = abs(6)
    >>> r
    6
    

    generator函数的“调用”实际返回一个generator对象:

    >>> g = fib(6)
    >>> g
    <generator object fib at 0x1022ef948>
  • 相关阅读:
    在QLabel上点击获得的效果
    Linux内核源代码解析——TCP状态转移图以及其实现
    SQL Server 执行计划缓存
    leetcode:Gray Code
    poj1459 Power Network
    eclipse 设置代码大小和布局里面代码大小
    shareSDK的初步使用(shareSDK中微信、qq等兼容问题,以及cocoapods支持架构冲突问题的解决)
    算法6-4:哈希表现状
    问题解决——限制窗体的最小尺寸
    Android用canvas画哆啦A梦
  • 原文地址:https://www.cnblogs.com/mysick/p/12636043.html
Copyright © 2011-2022 走看看