zoukankan      html  css  js  c++  java
  • 【BZOJ2154】Crash的数字表格(莫比乌斯反演)

    题意:

     

    思路:如上

    From http://blog.csdn.net/regina8023/article/details/44243911

    最后的F(x,y)的推法和求gcd(x,y)=1的(x,y)对数差不多,只不过在推导过程中把原来1的地方换成x*y。

    那么我们预处理出i^2*u[i]的前缀和,F(x,y)可以在O(sqrt(n))时间内求出来,而ans的式子也可以在O(sqrt(n))中求出来,

    因此最后的时间复杂度是O(n)的。

     1 const mo=20101009;
     2 var flag,prime,mu:array[0..10000000]of longint;
     3     sum:array[0..10000000]of int64;
     4     n1,m1,i,j,max,m,t,x,y,t1,t2:longint;
     5     ans,pos:int64;
     6 
     7 function ask(n,m:int64):int64;
     8 begin
     9  n:=n*(n+1) div 2 mod mo;
    10  m:=m*(m+1) div 2 mod mo;
    11  exit(n*m mod mo);
    12 end;
    13 
    14 function clac(n,m:longint):int64;
    15 var t1,t2,i,pos:longint;
    16     x,y:int64;
    17 begin
    18  i:=1; clac:=0;
    19  while i<=n do
    20  begin
    21   x:=n div i; y:=m div i;
    22   t1:=n div x; t2:=m div y;
    23   if t1<t2 then pos:=t1
    24    else pos:=t2;
    25   clac:=clac+ask(x,y)*(sum[pos]-sum[i-1]) mod mo;
    26   clac:=(clac mod mo+mo) mod mo;
    27   i:=pos+1;
    28  end;
    29 end;
    30 
    31 begin
    32  assign(input,'bzoj2154.in'); reset(input);
    33  assign(output,'bzoj2154.out'); rewrite(output);
    34  readln(n1,m1);
    35  if n1>m1 then max:=n1
    36   else max:=m1;
    37  mu[1]:=1;
    38  for i:=2 to max do
    39  begin
    40   if flag[i]=0 then
    41   begin
    42    inc(m); prime[m]:=i;
    43    mu[i]:=-1;
    44   end;
    45   j:=1;
    46   while (j<=m)and(prime[j]*i<=max) do
    47   begin
    48    t:=prime[j]*i; flag[t]:=1;
    49    if i mod prime[j]=0 then
    50    begin
    51     mu[t]:=0;
    52     break;
    53    end;
    54    mu[t]:=-mu[i];
    55    inc(j);
    56   end;
    57  end;
    58  for i:=1 to max do sum[i]:=(sum[i-1]+int64(mu[i])*i*i) mod mo;
    59  if n1>m1 then
    60  begin
    61   t:=n1; n1:=m1; m1:=t;
    62  end;
    63  i:=1;
    64  while i<=n1 do
    65  begin
    66   x:=n1 div i; y:=m1 div i;
    67   t1:=n1 div x; t2:=m1 div y;
    68   if t1<t2 then pos:=t1
    69    else pos:=t2;
    70   ans:=ans+(pos-i+1)*(pos+i) div 2 mod mo*clac(x,y) mod mo;
    71   ans:=ans mod mo;
    72   i:=pos+1;
    73  end;
    74  writeln(ans);
    75  close(input);
    76  close(output);
    77 end.

     UPD(2018.10.22):C++

     1 #include<cstdio>
     2 #include<cstring>
     3 #include<string>
     4 #include<cmath>
     5 #include<iostream>
     6 #include<algorithm>
     7 #include<map>
     8 #include<set>
     9 #include<queue>
    10 #include<vector>
    11 using namespace std;
    12 typedef long long ll;
    13 typedef unsigned int uint;
    14 typedef unsigned long long ull;
    15 typedef pair<int,int> PII;
    16 typedef vector<int> VI;
    17 #define fi first
    18 #define se second
    19 #define MP make_pair
    20 #define MAXN 10000000 
    21 #define eps 1e-8
    22 #define pi  acos(-1)
    23 #define oo  1e9
    24 #define MOD 20101009
    25  
    26 int flag[MAXN+10],prime[MAXN+10],mu[MAXN+10];
    27 ll s[MAXN+10];
    28  
    29 ll ask(ll n,ll m)
    30 {
    31     n=n*(n+1)/2%MOD;
    32     m=m*(m+1)/2%MOD;
    33     return n*m%MOD;
    34 }
    35  
    36 ll calc(int n,int m)
    37 {
    38     int i=1; 
    39     ll ans=0;
    40     while(i<=n)
    41     {
    42         ll x=n/i; ll y=m/i;
    43         ll t1=n/x; ll t2=m/y;
    44         ll pos=min(t1,t2);
    45         ans+=ask(x,y)*(s[pos]-s[i-1])%MOD;
    46         ans=(ans%MOD+MOD)%MOD;
    47         i=pos+1;
    48     }
    49     return ans;
    50 }
    51  
    52 int main()
    53 {
    54     int N,M;
    55     scanf("%d%d",&N,&M);
    56     int MAX=max(N,M);
    57     mu[1]=1;
    58     int m=0;
    59     for(int i=2;i<=MAX;i++)
    60     {
    61         if(!flag[i])
    62         {
    63             prime[++m]=i;
    64             mu[i]=-1;
    65         }
    66         for(int j=1;j<=m;j++)
    67         {
    68             int t=prime[j]*i;
    69             if(t>MAX) break; 
    70             flag[t]=1;
    71             if(i%prime[j]==0)
    72             {
    73                 mu[t]=0;
    74                 break;
    75             }
    76             mu[t]=-mu[i];
    77         }
    78     }
    79      
    80     for(int i=1;i<=MAX;i++) s[i]=(s[i-1]+1ll*mu[i]*i*i)%MOD;
    81     if(N>M) swap(N,M);
    82     int i=1;
    83     ll ans=0;
    84     while(i<=N)
    85     {
    86         int x=N/i; int y=M/i;
    87         int t1=N/x; int t2=M/y;
    88         ll pos=min(t1,t2);
    89         ans+=(pos-i+1)*(pos+i)/2*calc(x,y)%MOD;
    90         ans%=MOD;
    91         i=pos+1;
    92     }
    93     printf("%lld
    ",ans); 
    94     return 0;
    95 }
    96 
  • 相关阅读:
    生成器
    迭代器
    装饰器
    闭包函数
    函数对象
    函数
    文件
    字符编码
    基本的数据类型和内置方法02
    基本的数据类型和内置方法01
  • 原文地址:https://www.cnblogs.com/myx12345/p/6670538.html
Copyright © 2011-2022 走看看