zoukankan      html  css  js  c++  java
  • Hopscotch POJ

    The cows play the child's game of hopscotch in a non-traditional way. Instead of a linear set of numbered boxes into which to hop, the cows create a 5x5 rectilinear grid of digits parallel to the x and y axes. 

    They then adroitly hop onto any digit in the grid and hop forward, backward, right, or left (never diagonally) to another digit in the grid. They hop again (same rules) to a digit (potentially a digit already visited). 

    With a total of five intra-grid hops, their hops create a six-digit integer (which might have leading zeroes like 000201). 

    Determine the count of the number of distinct integers that can be created in this manner.

    Input

    * Lines 1..5: The grid, five integers per line

    Output

    * Line 1: The number of distinct integers that can be constructed

    Sample Input

    1 1 1 1 1
    1 1 1 1 1
    1 1 1 1 1
    1 1 1 2 1
    1 1 1 1 1

    Sample Output

    15

    Hint

    OUTPUT DETAILS: 
    111111, 111112, 111121, 111211, 111212, 112111, 112121, 121111, 121112, 121211, 121212, 211111, 211121, 212111, and 212121 can be constructed. No other values are possible.
     
    翻译:

    给出一个5*5的矩阵,每一点都有一个数字,让你分别从任意一个数字出发,向上下左右移动,移动6次,所走的路线组成一个字符串。路径可以返回。求:一共可以组成多少个不同的字符串?

    思路:以一个整数存放路线,搜索所有情况,用set去重。最后得出结果。要注意只能走六步。

     1 #include <cstdio>
     2 #include <fstream>
     3 #include <algorithm>
     4 #include <cmath>
     5 #include <deque>
     6 #include <vector>
     7 #include <queue>
     8 #include <string>
     9 #include <cstring>
    10 #include <map>
    11 #include <stack>
    12 #include <set>
    13 #include <sstream>
    14 #include <iostream>
    15 #define mod 1000000007
    16 #define eps 1e-6
    17 #define ll long long
    18 #define INF 0x3f3f3f3f
    19 using namespace std;
    20 
    21 int fx[4]={1,-1,0,0},fy[4]={0,0,1,-1};
    22 int sz[6][6];
    23 set<int> se;
    24 
    25 void dfs(int i,int j,int s,int num)
    26  {
    27      if(s==6)
    28      {
    29          if(!se.count(num))
    30          {
    31              se.insert(num);
    32          }
    33          return ;
    34      }
    35      for(int k=0;k<4;k++)
    36      {
    37          int x=i+fx[k];
    38          int y=j+fy[k];
    39          if(x>=0&&y>=0&&x<5&&y<5&&s<6)
    40          {
    41              dfs(x,y,s+1,num*10+sz[x][y]);
    42          }
    43      }
    44  }
    45 int main()
    46 {
    47     for(int i=0;i<5;i++)
    48     {
    49         for(int j=0;j<5;j++)
    50         {
    51             scanf("%d",&sz[i][j]);
    52         }
    53     }
    54     for(int i=0;i<5;i++)
    55     {
    56         for(int j=0;j<5;j++)
    57         {
    58             dfs(i,j,1,sz[i][j]);
    59         }
    60     }
    61     cout<<se.size()<<endl;
    62 
    63 }

     

  • 相关阅读:
    base.View.OpenParameter.CreateFrom打开历史单据的值是default
    创建日期时间大于启动日期时间
    下拉列表不显示空白选项的原因
    复制、下推、选单时计算类的实体服务规则不会执行
    选单返回数据以后会执行的事件方法
    判断单据体是否录入行
    供应商协同平台
    .net core获取运行时文件绝对路径
    gmock函数参数输出 备忘录
    リバース 終章
  • 原文地址:https://www.cnblogs.com/mzchuan/p/11199242.html
Copyright © 2011-2022 走看看