zoukankan      html  css  js  c++  java
  • 深入解析MySQL分区(Partition)功能

    = 水平分区(根据列属性按行分)=
    举个简单例子:一个包含十年发票记录的表可以被分区为十个不同的分区,每个分区包含的是其中一年的记录。

    水平分区的模式:

    1. Range(范围) – 这种模式允许DBA将数据划分不同范围。例如DBA可以将一个表通过年份划分成三个分区,80年代(1980's)的数据,90年代(1990's)的数据以及任何在2000年(包括2000年)后的数据。 
    2. Hash(哈希)  – 这种模式允许DBA通过对表的一个或多个列的Hash Key进行计算,最后通过这个Hash码不同数值对应的数据区域进行分区。例如DBA可以建立一个对表主键进行分区的表。 
    3. Key(键值)    – Hash模式的一种延伸,这里的Hash Key是MySQL系统产生的。 
    4. List(预定义列表) – 这种模式允许系统通过DBA定义的列表的值所对应的行数据进行分割。例如:DBA建立了一个横跨三个分区的表,分别根据2004年2005年和2006年值所对应的数据。 
    5. Composite(复合模式) - 很神秘吧,哈哈,其实是以上模式的组合使用而已,就不解释了。举例:在初始化已经进行了Range范围分区的表上,我们可以对其中一个分区再进行hash哈希分区。 

     垂直分区(按列分):

           举个简单例子:一个包含了大text和BLOB列的表,这些text和BLOB列又不经常被访问,这时候就要把这些不经常使用的text和BLOB了划分到另一个分区,在保证它们数据相关性的同时还能提高访问速度。

    分区表和未分区表试验过程

          *创建分区表,按日期的年份拆分

    mysql> CREATE TABLE part_tab (
    c1 int default NULL,
    c2 varchar(30) default NULL,
    c3 date default NULL
    ) engine=myisam PARTITION BY RANGE (year(c3)) (PARTITION p0 VALUES LESS THAN (1995), PARTITION p1 VALUES LESS THAN (1996) , PARTITION p2 VALUES LESS THAN (1997) , PARTITION p3 VALUES LESS THAN (1998) , PARTITION p4 VALUES LESS THAN (1999) , PARTITION p5 VALUES LESS THAN (2000) , PARTITION p6 VALUES LESS THAN (2001) , PARTITION p7 VALUES LESS THAN (2002) , PARTITION p8 VALUES LESS THAN (2003) , PARTITION p9 VALUES LESS THAN (2004) , PARTITION p10 VALUES LESS THAN (2010), PARTITION p11 VALUES LESS THAN MAXVALUE );

        注意最后一行,考虑到可能的最大值

       *创建未分区表

    mysql> create table no_part_tab (
    c1 int(11) default NULL,
    c2 varchar(30) default NULL,
    c3 date default NULL
    ) engine=myisam;

       *通过存储过程灌入800万条测试数据

    mysql> set sql_mode=''; /* 如果创建存储过程失败,则先需设置此变量, bug? */
    mysql> delimiter //     /* 设定语句终结符为 //,因存储过程语句用;结束 */

      mysql> CREATE PROCEDURE load_part_tab()
      begin
       declare v int default 0;
       while v < 8000000
      do
       insert into part_tab
       values (v,'testing partitions',adddate('1995-01-01',(rand(v)*36520) mod 3652));
      set v = v + 1;
      end while;
      end
      //
      mysql> delimiter ;
      mysql> call load_part_tab();
      Query OK, 1 row affected (8 min 17.75 sec)

      mysql> insert into no_part_tab select * from part_tab;      //将800万数据复制到未分区的表no_part_tab 中

      Query OK, 8000000 rows affected (51.59 sec)
      Records: 8000000 Duplicates: 0 Warnings: 0

        * 测试SQL性能

    mysql> select count(*) from part_tab where c3 > date('1995-01-01') and c3 < date('1995-12-31');
    +----------+
    | count(*) |
    +----------+
    |   795181 |
    +----------+

      1 row in set (0.55 sec)

    mysql> select count(*) from no_part_tab where c3 > date('1995-01-01') and c3 < date('1995-12-31'); 
    +----------+
    | count(*) |
    +----------+
    |   795181 |
    +----------+
    1 row in set (4.69 sec)

       结果表明分区表比未分区表的执行时间少90%

      * 通过explain语句来分析执行情况

    mysql > explain select count(*) from no_part_tab where c3 > date('1995-01-01') and c3 < date ('1995-12-31') G    #结尾的G使得mysql的输出改为列模式 

      *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: no_part_tab
             type: ALL
    possible_keys: NULL
              key: NULL
          key_len: NULL
              ref: NULL
             rows: 8000000               #需要查询800万条记录
            Extra: Using where
      1 row in set (0.00 sec)

      mysql> explain select count(*) from part_tab where c3 > date ('1995-01-01') and c3 < date ('1995-12-31') G

      *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: part_tab
             type: ALL
    possible_keys: NULL
              key: NULL
          key_len: NULL
              ref: NULL
             rows: 798458               #只需要查询798458条记录
            Extra: Using where
      1 row in set (0.00 sec)

        * 试验创建索引后情况

    mysql> create index idx_of_c3 on no_part_tab (c3);
    Query OK, 8000000 rows affected (1 min 18.08 sec)
    Records: 8000000 Duplicates: 0 Warnings: 0

    mysql> create index idx_of_c3 on part_tab (c3);
    Query OK, 8000000 rows affected (1 min 19.19 sec)
    Records: 8000000 Duplicates: 0 Warnings: 0

       创建索引后的数据库文件大小列表:

    2008-05-24 09:23             8,608 no_part_tab.frm
    2008-05-24 09:24       255,999,996 no_part_tab.MYD
    2008-05-24 09:24        81,611,776 no_part_tab.MYI
    2008-05-24 09:25                 0 part_tab#P#p0.MYD
    2008-05-24 09:26             1,024 part_tab#P#p0.MYI
    2008-05-24 09:26        25,550,656 part_tab#P#p1.MYD
    2008-05-24 09:26         8,148,992 part_tab#P#p1.MYI
    2008-05-24 09:26        25,620,192 part_tab#P#p10.MYD
    2008-05-24 09:26         8,170,496 part_tab#P#p10.MYI
    2008-05-24 09:25                 0 part_tab#P#p11.MYD
    2008-05-24 09:26             1,024 part_tab#P#p11.MYI
    2008-05-24 09:26        25,656,512 part_tab#P#p2.MYD
    2008-05-24 09:26         8,181,760 part_tab#P#p2.MYI
    2008-05-24 09:26        25,586,880 part_tab#P#p3.MYD
    2008-05-24 09:26         8,160,256 part_tab#P#p3.MYI
    2008-05-24 09:26        25,585,696 part_tab#P#p4.MYD
    2008-05-24 09:26         8,159,232 part_tab#P#p4.MYI
    2008-05-24 09:26        25,585,216 part_tab#P#p5.MYD
    2008-05-24 09:26         8,159,232 part_tab#P#p5.MYI
    2008-05-24 09:26        25,655,740 part_tab#P#p6.MYD
    2008-05-24 09:26         8,181,760 part_tab#P#p6.MYI
    2008-05-24 09:26        25,586,528 part_tab#P#p7.MYD
    2008-05-24 09:26         8,160,256 part_tab#P#p7.MYI
    2008-05-24 09:26        25,586,752 part_tab#P#p8.MYD
    2008-05-24 09:26         8,160,256 part_tab#P#p8.MYI
    2008-05-24 09:26        25,585,824 part_tab#P#p9.MYD
    2008-05-24 09:26         8,159,232 part_tab#P#p9.MYI
    2008-05-24 09:25             8,608 part_tab.frm
    2008-05-24 09:25                68 part_tab.par

       * 再次测试SQL性能

    mysql> select count(*) from no_part_tab where c3 > date ('1995-01-01') and c3 < date ('1995-12-31');
    +----------+
    | count(*) |
    +----------+
    |   795181 |
    +----------+

      1 row in set (2.42 sec)   # 为原来4.69 sec 的51%

      #重启mysql ( net stop mysql, net start mysql)后,查询时间降为0.89 sec,几乎与分区表相同。

      mysql> select count(*) from part_tab where c3 > date ('1995-01-01') and c3 < date ('1995-12-31');

      +----------+
      | count(*) |
      +----------+
      |   795181 |
      +----------+
      1 row in set (0.86 sec)

       * 更进一步的试验
        ** 增加日期范围

    mysql> select count(*) from no_part_tab where c3 > date ('1995-01-01') and c3 < date ('1997-12-31');
    +----------+
    | count(*) |
    +----------+
    | 2396524 |
    +----------+
    1 row in set (5.42 sec)

    mysql> select count(*) from part_tab where c3 > date ('1995-01-01') and c3 < date ('1997-12-31');
    +----------+
    | count(*) |
    +----------+
    | 2396524 |
    +----------+

      1 row in set (2.63 sec)

        ** 增加未索引字段查询

    mysql> select count(*) from no_part_tab where c3 > date ('1995-01-01') and c3 < date ('1996-12-31') and c2='hello';
    +----------+
    | count(*) |
    +----------+
    |        0 |
    +----------+
    1 row in set (11.52 sec)

    mysql> select count(*) from part_tab where c3 > date ('1995-01-01') and c3 < date ('1996-12-31') and c2='hello';
    +----------+
    | count(*) |
    +----------+
    |        0 |
    +----------+
    1 row in set (0.75 sec)

       = 初步结论 =
          * 分区和未分区占用文件空间大致相同 (数据和索引文件)
          * 如果查询语句中有未建立索引字段,分区时间远远优于未分区时间
          * 如果查询语句中字段建立了索引,分区和未分区的差别缩小,分区略优于未分区。

    = 最终结论 =
    * 对于大数据量,建议使用分区功能。
    * 去除不必要的字段
    * 根据手册, 增加myisam_max_sort_file_size 会增加分区性能( mysql重建索引时允许使用的临时文件最大大小)

    分区命令详解

       * RANGE 类型

    CREATE TABLE users (
           uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
           name VARCHAR(30) NOT NULL DEFAULT '',
           email VARCHAR(30) NOT NULL DEFAULT ''
    )
    PARTITION BY RANGE (uid) (
           PARTITION p0 VALUES LESS THAN (3000000)
           DATA DIRECTORY = '/data0/data'
           INDEX DIRECTORY = '/data1/idx',
     
           PARTITION p1 VALUES LESS THAN (6000000)
           DATA DIRECTORY = '/data2/data'
           INDEX DIRECTORY = '/data3/idx',
     
           PARTITION p2 VALUES LESS THAN (9000000)
           DATA DIRECTORY = '/data4/data'
           INDEX DIRECTORY = '/data5/idx',
     
           PARTITION p3 VALUES LESS THAN MAXVALUE     DATA DIRECTORY = '/data6/data' 
           INDEX DIRECTORY = '/data7/idx'
    );

       在这里,将用户表分成4个分区,以每300万条记录为界限,每个分区都有自己独立的数据、索引文件的存放目录,与此同时,这些目录所在的物理磁盘分区可能也都是完全独立的,可以提高磁盘IO吞吐量。

       * LIST 类型

    CREATE TABLE category (
         cid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
         name VARCHAR(30) NOT NULL DEFAULT ''
    )
    PARTITION BY LIST (cid) (
         PARTITION p0 VALUES IN (0,4,8,12)
         DATA DIRECTORY = '/data0/data' 
         INDEX DIRECTORY = '/data1/idx',
         
         PARTITION p1 VALUES IN (1,5,9,13)
         DATA DIRECTORY = '/data2/data'
         INDEX DIRECTORY = '/data3/idx',
         
         PARTITION p2 VALUES IN (2,6,10,14)
         DATA DIRECTORY = '/data4/data'
         INDEX DIRECTORY = '/data5/idx',
         
         PARTITION p3 VALUES IN (3,7,11,15)
         DATA DIRECTORY = '/data6/data'
         INDEX DIRECTORY = '/data7/idx'
    );

       分成4个区,数据文件和索引文件单独存放。

       * HASH 类型

    CREATE TABLE users (
         uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
         name VARCHAR(30) NOT NULL DEFAULT '',
         email VARCHAR(30) NOT NULL DEFAULT ''
    )
    PARTITION BY HASH (uid) PARTITIONS 4 (
         PARTITION p0
         DATA DIRECTORY = '/data0/data'
         INDEX DIRECTORY = '/data1/idx',
     
         PARTITION p1
         DATA DIRECTORY = '/data2/data'
         INDEX DIRECTORY = '/data3/idx',
     
         PARTITION p2
         DATA DIRECTORY = '/data4/data'
         INDEX DIRECTORY = '/data5/idx',
     
         PARTITION p3
         DATA DIRECTORY = '/data6/data'
         INDEX DIRECTORY = '/data7/idx'
    );

       * KEY 类型

    CREATE TABLE users (
         uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
         name VARCHAR(30) NOT NULL DEFAULT '',
         email VARCHAR(30) NOT NULL DEFAULT ''
    )
    PARTITION BY KEY (uid) PARTITIONS 4 (
         PARTITION p0
         DATA DIRECTORY = '/data0/data'
         INDEX DIRECTORY = '/data1/idx',
         
         PARTITION p1
         DATA DIRECTORY = '/data2/data' 
         INDEX DIRECTORY = '/data3/idx',
         
         PARTITION p2 
         DATA DIRECTORY = '/data4/data'
         INDEX DIRECTORY = '/data5/idx',
         
         PARTITION p3 
         DATA DIRECTORY = '/data6/data'
         INDEX DIRECTORY = '/data7/idx'
    );

       分成4个区,数据文件和索引文件单独存放。

       * 子分区
         子分区是针对 RANGE/LIST 类型的分区表中每个分区的再次分割。再次分割可以是 HASH/KEY 等类型。

    CREATE TABLE users (
         uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
         name VARCHAR(30) NOT NULL DEFAULT '',
         email VARCHAR(30) NOT NULL DEFAULT ''
    )
    PARTITION BY RANGE (uid) SUBPARTITION BY HASH (uid % 4) SUBPARTITIONS 2(
         PARTITION p0 VALUES LESS THAN (3000000)
         DATA DIRECTORY = '/data0/data'
         INDEX DIRECTORY = '/data1/idx',
     
         PARTITION p1 VALUES LESS THAN (6000000)
         DATA DIRECTORY = '/data2/data'
         INDEX DIRECTORY = '/data3/idx'
    );

        对 RANGE 分区再次进行子分区划分,子分区采用 HASH 类型。
        或者

    CREATE TABLE users (
         uid INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
         name VARCHAR(30) NOT NULL DEFAULT '',
         email VARCHAR(30) NOT NULL DEFAULT ''
    )
    PARTITION BY RANGE (uid) SUBPARTITION BY KEY(uid) SUBPARTITIONS 2(
         PARTITION p0 VALUES LESS THAN (3000000)
         DATA DIRECTORY = '/data0/data'
         INDEX DIRECTORY = '/data1/idx',
     
         PARTITION p1 VALUES LESS THAN (6000000)
         DATA DIRECTORY = '/data2/data'
         INDEX DIRECTORY = '/data3/idx'
    );

        对 RANGE 分区再次进行子分区划分,子分区采用 KEY 类型。

    分区管理

       * 删除分区  

    ALERT TABLE users DROP PARTITION p0; #删除分区 p0

       * 重建分区

           RANGE 分区重建

    ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES LESS THAN (6000000));  #将原来的 p0,p1 分区合并起来,放到新的 p0 分区中。

            LIST 分区重建

    ALTER TABLE users REORGANIZE PARTITION p0,p1 INTO (PARTITION p0 VALUES IN(0,1,4,5,8,9,12,13));#将原来的 p0,p1 分区合并起来,放到新的 p0 分区中。

            HASH/KEY 分区重建

    ALTER TABLE users REORGANIZE PARTITION COALESCE PARTITION 2; #用 REORGANIZE 方式重建分区的数量变成2,在这里数量只能减少不能增加。想要增加可以用 ADD PARTITION 方法。

       * 新增分区

            新增 RANGE 分区   

    #新增一个RANGE分区
    ALTER TABLE category ADD PARTITION (PARTITION p4 VALUES IN (16,17,18,19) DATA DIRECTORY = '/data8/data' INDEX DIRECTORY = '/data9/idx');

           新增 HASH/KEY 分区

    ALTER TABLE users ADD PARTITION PARTITIONS 8;   #将分区总数扩展到8个。

           给已有的表加上分区

    alter table results partition by RANGE (month(ttime)) 
    (
    PARTITION p0 VALUES LESS THAN (
    1), PARTITION p1 VALUES LESS THAN (2) ,
    PARTITION p2 VALUES LESS THAN (3) , PARTITION p3 VALUES LESS THAN (4) ,
    PARTITION p4 VALUES LESS THAN (5) , PARTITION p5 VALUES LESS THAN (6) ,
    PARTITION p6 VALUES LESS THAN (7) , PARTITION p7 VALUES LESS THAN (8) ,
    PARTITION p8 VALUES LESS THAN (9) , PARTITION p9 VALUES LESS THAN (10) ,
    PARTITION p10 VALUES LESS THAN (11), PARTITION p11 VALUES LESS THAN (12), PARTITION P12 VALUES LESS THAN (13)
    );

    默认分区限制分区字段必须是主键(PRIMARY KEY)的一部分,为了去除此限制:

      [方法1] 使用ID:

    mysql> ALTER TABLE np_pk
        ->     PARTITION BY HASH( TO_DAYS(added) )
        ->     PARTITIONS 4;
    #ERROR 1503 (HY000): A PRIMARY KEY must include all columns in the table's partitioning function

    mysql> ALTER TABLE np_pk
        ->     PARTITION BY HASH(id)
        ->     PARTITIONS 4;
    Query OK, 0 rows affected (0.11 sec)
    Records: 0 Duplicates: 0 Warnings: 0

      [方法2] 将原有PK去掉生成新PK

    mysql> alter table results drop PRIMARY KEY;
    Query OK, 5374850 rows affected (7 min 4.05 sec)
    Records: 5374850 Duplicates: 0 Warnings: 0

    mysql> alter table results add PRIMARY KEY(id, ttime);
    Query OK, 5374850 rows affected (7 min 4.05 sec)
    Records: 5374850 Duplicates: 0 Warnings: 0
  • 相关阅读:
    C学习笔记-typedef
    C学习笔记-typedef
    C语言之联合体
    C语言之联合体
    Browsersync 省时浏览器同步测试工具,浏览器自动刷新,多终端同步
    Gulp学习指南之CSS合并、压缩与MD5命名及路径替换
    es6 添加事件监听
    珠峰
    js添加触摸时间,禁止页面缩放
    百度地图叠加扇形区域,也可以做成异性区域
  • 原文地址:https://www.cnblogs.com/mzhaox/p/11201715.html
Copyright © 2011-2022 走看看