zoukankan      html  css  js  c++  java
  • ZOJ 1241 Geometry Made Simple

    /*
    Mathematics can be so easy when you have a computer. Consider the following example. You probably know that in a right-angled triangle, the length of the three sides a, b, c (where c is the longest side, called the hypotenuse) satisfy the relation a*a+b*b=c*c. This is called Pythagora’s Law.

    Here we consider the problem of computing the length of the third side, if two are given.

    Input

    The input contains the descriptions of several triangles. Each description consists of a line containing three integers a, b and c, giving the lengths of the respective sides of a right-angled triangle. Exactly one of the three numbers is equal to -1 (the ‘unknown’ side), the others are positive (the ‘given’ sides).

    A description having a=b=c=0 terminates the input.

    Output

    For each triangle description in the input, first output the number of the triangle, as shown in the sample output. Then print “Impossible.” if there is no right-angled triangle, that has the ‘given’ side lengths. Otherwise output the length of the ‘unknown’ side in the format “s = l”, where s is the name of the unknown side (a, b or c), and l is its length. l must be printed exact to three digits to the right of the decimal point.

    Print a blank line after each test case.

    Sample Input

    3 4 -1
    -1 2 7
    5 -1 3
    0 0 0

    Sample Output

    Triangle #1
    c = 5.000

    Triangle #2
    a = 6.708

    Triangle #3
    Impossible.

    */

    #include<stdio.h>
    #include<math.h>
    
    int main(){
    	double a,b,c;
    	int n=0;
    	while(scanf("%lf%lf%lf",&a,&b,&c)){
    		if(a==0&&b==0&&c==0)
    			break;
    		n++;
    			if (c==-1)
                  {
                         c=sqrt(a*a+b*b);
                         printf("Triangle #%d
    ",n);
                         printf("c = %.3lf
    ",c);
                  }
                else
                    if (a==-1)
                   {
                         a=sqrt(c*c-b*b);
                         printf("Triangle #%d
    ",n);
                          if (c>b)
                         printf("a = %.3lf
    ",a);
                         else
                         printf("Impossible.
    ");
                   }
                     else
                     if (b==-1)
                    {
                       b=sqrt(c*c-a*a);
                       printf("Triangle #%d
    ",n);
                       if (c>a)
                       printf("b = %.3lf
    ",b);
                       else
                         printf("Impossible.
    ");
                    }
                    printf("
    ");
    
    	}
    
    	return 0;
    }
  • 相关阅读:
    【Linux】PS命令
    【Linux】多进程与多线程之间的区别
    【杂项】XML Schema和DTD的区别
    推荐一组强大的Collection类
    关于Decorator模式我的理解
    菜鸟白话设计模式系列
    PowerCollections研究: 第1弹竟就发现不少问题
    [白话设计模式] Singleton
    PowerCollection研究:第2枪小谈RemoveALL算法
    yield 关键字
  • 原文地址:https://www.cnblogs.com/naive/p/3568818.html
Copyright © 2011-2022 走看看