zoukankan      html  css  js  c++  java
  • ZOJ 1241 Geometry Made Simple

    /*
    Mathematics can be so easy when you have a computer. Consider the following example. You probably know that in a right-angled triangle, the length of the three sides a, b, c (where c is the longest side, called the hypotenuse) satisfy the relation a*a+b*b=c*c. This is called Pythagora’s Law.

    Here we consider the problem of computing the length of the third side, if two are given.

    Input

    The input contains the descriptions of several triangles. Each description consists of a line containing three integers a, b and c, giving the lengths of the respective sides of a right-angled triangle. Exactly one of the three numbers is equal to -1 (the ‘unknown’ side), the others are positive (the ‘given’ sides).

    A description having a=b=c=0 terminates the input.

    Output

    For each triangle description in the input, first output the number of the triangle, as shown in the sample output. Then print “Impossible.” if there is no right-angled triangle, that has the ‘given’ side lengths. Otherwise output the length of the ‘unknown’ side in the format “s = l”, where s is the name of the unknown side (a, b or c), and l is its length. l must be printed exact to three digits to the right of the decimal point.

    Print a blank line after each test case.

    Sample Input

    3 4 -1
    -1 2 7
    5 -1 3
    0 0 0

    Sample Output

    Triangle #1
    c = 5.000

    Triangle #2
    a = 6.708

    Triangle #3
    Impossible.

    */

    #include<stdio.h>
    #include<math.h>
    
    int main(){
    	double a,b,c;
    	int n=0;
    	while(scanf("%lf%lf%lf",&a,&b,&c)){
    		if(a==0&&b==0&&c==0)
    			break;
    		n++;
    			if (c==-1)
                  {
                         c=sqrt(a*a+b*b);
                         printf("Triangle #%d
    ",n);
                         printf("c = %.3lf
    ",c);
                  }
                else
                    if (a==-1)
                   {
                         a=sqrt(c*c-b*b);
                         printf("Triangle #%d
    ",n);
                          if (c>b)
                         printf("a = %.3lf
    ",a);
                         else
                         printf("Impossible.
    ");
                   }
                     else
                     if (b==-1)
                    {
                       b=sqrt(c*c-a*a);
                       printf("Triangle #%d
    ",n);
                       if (c>a)
                       printf("b = %.3lf
    ",b);
                       else
                         printf("Impossible.
    ");
                    }
                    printf("
    ");
    
    	}
    
    	return 0;
    }
  • 相关阅读:
    CodeForces 567C. Geometric Progression(map 数学啊)
    【 D3.js 高级系列 — 7.0 】 标注地点
    我的家乡:三河古镇已经登上央视CCTV-1新闻联播啦!
    自考--初读
    微信支付v2开发(6) 发货通知
    微信支付v2开发(7) 告警通知
    微信支付v2开发(8) 维权通知
    微信公众平台注册
    微信公众平台开发(95) 世界杯赛程
    微信公众平台开发(96) 多个功能整合
  • 原文地址:https://www.cnblogs.com/naive/p/3568818.html
Copyright © 2011-2022 走看看