zoukankan      html  css  js  c++  java
  • NOIP 模拟 $32; m Walker$

    题解 (by;zjvarphi)

    发现当把 ( m scale×cos heta,scale×sin heta,dx,dy) 当作变量时只有四个,两个方程就行。

    ( m nle 500) 时,可以选取两组进行高斯消元,解出答案后回带。

    但当 (n) 极大时,采用随机化的做法,每次随机选取两个,这样每次选取不正确的概率为 (frac{3}{4}),选取 50 次后基本就会出答案了。

    记得判断 ( m sin) 的正负

    Code
    #include<bits/stdc++.h>
    #define ri register signed
    #define p(i) ++i
    namespace IO{
        char buf[1<<21],*p1=buf,*p2=buf;
        #define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
        struct nanfeng_stream{
            template<typename T>inline nanfeng_stream &operator>>(T &x) {
                ri f=0;x=0;register char ch=gc();
                while(!isdigit(ch)) {f|=ch=='-';ch=gc();}
                while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
                return x=f?-x:x,*this;
            }
        }cin;
    }
    using IO::cin;
    namespace nanfeng{
        #define FI FILE *IN
        #define FO FILE *OUT
        template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
        template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
        typedef double db;
        static const int N=1e5+7;
        static const db eps=1e-6;
        struct node{db x1,y1,x2,y2;}pnt[N];
        int p[N],n,hl;
        db mt[51][51],x1,x2,x3,x4;
        inline void Guass() {
            for (ri i(1);i<=4;p(i)) {
                ri k=i;
                for (ri j(i+1);j<=4;p(j)) if (fabs(mt[j][i])>fabs(mt[k][i])) k=j;
                if (k!=i) std::swap(mt[k],mt[i]);
                for (ri j(1);j<=4;p(j)) {
                    if (i==j) continue;
                    db tmp=mt[j][i]/mt[i][i];
                    for (ri l(1);l<=5;p(l)) mt[j][l]-=tmp*mt[i][l];
                }
            }
        }
        inline bool judge() {
            ri cnt(0);
            x1=mt[1][5]/mt[1][1];
            x2=mt[2][5]/mt[2][2];
            x3=mt[3][5]/mt[3][3];
            x4=mt[4][5]/mt[4][4];
            for (ri i(1);i<=n;p(i)) 
                if (fabs(pnt[i].x1*x1-pnt[i].y1*x2+x3-pnt[i].x2)<=eps&&fabs(pnt[i].x1*x2+pnt[i].y1*x1+x4-pnt[i].y2)<=eps) p(cnt);
            return cnt>=hl;
        }
        inline int solve() {
            register db sc=sqrt(x1*x1+x2*x2);
            if (x2/sc<=eps) printf("%.10lf
    ",acos(-1)*2.0-acos(x1/sc));
            else printf("%.10lf
    ",acos(x1/sc));
            printf("%.10lf
    %.10lf %.10lf
    ",sc,x3,x4);
            return 0;
        }
        inline int main() {
            //FI=freopen("nanfeng.in","r",stdin);
            //FO=freopen("nanfeng.out","w",stdout);
            srand(unsigned(time(0)));
            std::cin >> n;
            hl=(n>>1)+(n&1);
            for (ri i(1);i<=n;p(i)) {
                scanf("%lf%lf%lf%lf",&pnt[i].x1,&pnt[i].y1,&pnt[i].x2,&pnt[i].y2);
                p[i]=i;
            }
            if (n>500) {
                std::random_shuffle(p+1,p+n+1);
                for (ri i(1);i<=n;p(i)) {
                    ri cur1(p[i]),cur2(p[i+1]);
                    mt[1][1]=pnt[cur1].x1,mt[1][2]=-pnt[cur1].y1,mt[1][3]=1.0,mt[1][4]=0.0,mt[1][5]=pnt[cur1].x2;
                    mt[2][1]=pnt[cur1].y1,mt[2][2]=pnt[cur1].x1,mt[2][3]=0.0,mt[2][4]=1.0,mt[2][5]=pnt[cur1].y2;
                    mt[3][1]=pnt[cur2].x1,mt[3][2]=-pnt[cur2].y1,mt[3][3]=1.0,mt[3][4]=0.0,mt[3][5]=pnt[cur2].x2;
                    mt[4][1]=pnt[cur2].y1,mt[4][2]=pnt[cur2].x1,mt[4][3]=0.0,mt[4][4]=1.0,mt[4][5]=pnt[cur2].y2;
                    Guass();
                    if (judge()) return solve();
                }
            } else {
                for (ri i(1);i<=n;p(i)) 
                    for (ri j(i+1);j<=n;p(j)) {
                        ri cur1(i),cur2(j);
                        mt[1][1]=pnt[cur1].x1,mt[1][2]=-pnt[cur1].y1,mt[1][3]=1.0,mt[1][4]=0.0,mt[1][5]=pnt[cur1].x2;
                        mt[2][1]=pnt[cur1].y1,mt[2][2]=pnt[cur1].x1,mt[2][3]=0.0,mt[2][4]=1.0,mt[2][5]=pnt[cur1].y2;
                        mt[3][1]=pnt[cur2].x1,mt[3][2]=-pnt[cur2].y1,mt[3][3]=1.0,mt[3][4]=0.0,mt[3][5]=pnt[cur2].x2;
                        mt[4][1]=pnt[cur2].y1,mt[4][2]=pnt[cur2].x1,mt[4][3]=0.0,mt[4][4]=1.0,mt[4][5]=pnt[cur2].y2;
                        Guass();
                        if (judge()) return solve();
                    }
            }
            return 0;
        }
    }
    int main() {return nanfeng::main();}
    
  • 相关阅读:
    event与WaitForSingleObject、MsgWaitForMultipleObjects等
    vc不包含MFC就不打印内存泄露?
    使用visual leak detector(vld)查找内存泄露
    C#里面中将字符串转为变量名
    如何编写nopCommerce插件
    object成员,不见了!
    NopCommerce 定制系列(一):增加 Sha256+Base64 加密
    c#中的二维数组与锯齿数组
    待搞清楚
    NopCommerce 2.5的部署
  • 原文地址:https://www.cnblogs.com/nanfeng-blog/p/15113206.html
Copyright © 2011-2022 走看看