zoukankan      html  css  js  c++  java
  • 高斯消元模板

    View Code
    #include <iostream>
    #include <string>
    #include <cmath>
    using namespace std;
    
    const int maxn = 105;
    
    int equ, var; // 有equ个方程,var个变元。增广阵行数为equ, 分别为0到equ - 1,列数为var + 1,分别为0到var.
    int a[maxn][maxn];
    int x[maxn]; // 解集.
    bool free_x[maxn]; // 判断是否是不确定的变元.
    int free_num;
    
    void Debug(void)
    {
        int i, j;
        for (i = 0; i < equ; i++)
        {
            for (j = 0; j < var + 1; j++)
            {
                cout << a[i][j] << " ";
            }
            cout << endl;
        }
        cout << endl;
    }
    inline int gcd(int a, int b)
    {
        int t;
        while (b != 0)
        {
            t = b;
            b = a % b;
            a = t;
        }
        return a;
    }
    inline int lcm(int a, int b)
    {
        return a * b / gcd(a, b);
    }
    // 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
    int Gauss(void)
    {
        int i, j, k;
        int max_r; // 当前这列绝对值最大的行.
        int col; // 当前处理的列.
        int ta, tb;
        int LCM;
        int temp;
        int free_x_num;
        int free_index;
        // 转换为阶梯阵.
        col = 0; // 当前处理的列.
        for (k = 0; k < equ && col < var; k++, col++)
        {
            // 枚举当前处理的行.
            // 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
            max_r = k;
            for (i = k + 1; i < equ; i++)
            {
                if (abs(a[i][col]) > abs(a[max_r][col])) max_r = i;
    
            }
            if (a[max_r][col] == 0)
            {
                // 说明该col列第k行以下全是0了,则处理当前行的下一列.
                k--;
                continue;
            }
            if (max_r != k)
            {
                // 与第k行交换.
                for (j = col; j < var + 1; j++) swap(a[k][j], a[max_r][j]);
            }
            for (i = k + 1; i < equ; i++)
            {
                // 枚举要删去的行.
                if (a[i][col] != 0)
                {
                    LCM = lcm(abs(a[i][col]), abs(a[k][col]));
                    ta = LCM / abs(a[i][col]), tb = LCM / abs(a[k][col]);
                    if (a[i][col] * a[k][col] < 0) tb = -tb; // 异号的情况是两个数相加. 80                 for (j = col; j < var + 1; j++)
                    {
                        a[i][j] = a[i][j] * ta - a[k][j] * tb;
                    }
                }
            }
        }
        Debug();
        // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
        for (i = k; i < equ; i++)
        {
            // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
            if (a[i][col] != 0) return -1;
    
        }
        // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
        // 且出现的行数即为自由变元的个数.
        if (k < var)
        {
            // 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
            for (i = k - 1; i >= 0; i--)
            {
                // 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.
                // 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
                free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
                for (j = 0; j < var; j++)
                {
                    if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;
                }
                if (free_x_num > 1) continue; // 无法求解出确定的变元.
                // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
                temp = a[i][var];
                for (j = 0; j < var; j++)
                {
                    if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];
    
                }
                x[free_index] = temp / a[i][free_index]; // 求出该变元.
                free_x[free_index] = 0; // 该变元是确定的.
            }
            return var - k; // 自由变元有var - k个.
        }
        // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
        // 计算出Xn-1, Xn-2 ... X0.
        for (i = var - 1; i >= 0; i--)
        {
            temp = a[i][var];
            for (j = i + 1; j < var; j++)
            {
                if (a[i][j] != 0) temp -= a[i][j] * x[j];
            }
            if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.
            x[i] = temp / a[i][i];
        }
        return 0;
    }
    
    int main(void)
    {
        freopen("Input.txt", "r", stdin);
        int i, j;
        while (scanf("%d %d", &equ, &var) != EOF)
        {
            memset(a, 0, sizeof(a));
            memset(x, 0, sizeof(x));
            memset(free_x, 1, sizeof(free_x)); // 一开始全是不确定的变元.
            for (i = 0; i < equ; i++)
            {
                for (j = 0; j < var + 1; j++)
                {
                    scanf("%d", &a[i][j]);
                }
            }
            //        Debug();
            free_num = Gauss();
            if (free_num == -1) printf("无解!\n");
            else if (free_num == -2) printf("有浮点数解,无整数解!\n");
            else if (free_num > 0)
            {
                printf("无穷多解! 自由变元个数为%d\n", free_num);
                for (i = 0; i < var; i++)
                {
                    if (free_x[i]) printf("x%d 是不确定的\n", i + 1);
                    else printf("x%d: %d\n", i + 1, x[i]);
                }
            }
            else
            {
                for (i = 0; i < var; i++)
                {
                    printf("x%d: %d\n", i + 1, x[i]);
                }
            }
            printf("\n");
        }
        return 0;
    }

    来自这位大牛的模板

    http://www.cnblogs.com/celia01/archive/2012/04/06/2435523.html

  • 相关阅读:
    Docker安装以及运行第一个HelloWorld
    logstash-配置文件详解
    oh my zsh 常用插件
    Linux之Shell基本命令
    Linux的基本命令
    Vue
    rest_framwork之认证组件,权限组件,频率组件
    rest_framwork之序列化组件
    rest_framwork之APIView
    中间件
  • 原文地址:https://www.cnblogs.com/nanke/p/2444083.html
Copyright © 2011-2022 走看看