zoukankan      html  css  js  c++  java
  • Linear Algebra lecture9 note

    Linear independence

    Spanning a space

    Basis and dimension

    以上概念都是针对a bunch of vectors, 不是矩阵里的概念

     


    Suppose A is m by n with m<n, then there are non-zero solutions to AX=0(more unknowns than equations)

    Reason: There will be free variables

    Independence:

    Vectors X1, X2,…,Xn are independent if no combination gives zero vector( except the zero combination)

    C1X1+C2X2+…+CnXn≠0

    1.若以上向量中存在零向量,则不可能线性无关

    2.平面内三个向量定成线性相关

    3.如果零空间存在非零向量,那么各列线性相关

    Repeat: when V1,V2,…,Vn are columns of A,

    they are independent if N(A) is only zero vectors( no free variable,r=n)

    they are dependent if AC=0 for some non-zero C( has free variable,r<n)

     


    Spanning a space: Vectors V1,V2,..,Vl span a subspace means: The space consists of all combinations of those vectors

    Basis: For a space is a sequence of vectors V1,V2,…,Vd with 2 properties:

    1.They are independent

    2.They span the spaces

    Example:

    space in R3

    one space is

    image

    如何检验是否构成基?

    可当作矩阵列向量,经过消元、变换,看是否能得到自由变量?是否列都是主列?

    Rn,n vectors give basis if the n *n matrix with those columns if invertible

    Given a space: Every basis for space has the same number of vectors, and this number is called dimension of space

     


    Summary:

    Independence, that looks at combinations not being zero

    (线性无关,着眼于线性组合不为0)

    Spanning, that looks at all the combinations

    (生成,着眼于所有的线性组合)

    Basis, that’s the one that combines independence and spanning

    (基,一组无关的向量并生成空间)

    Dimension,the number of vectors in any basis

    (维数,表示基向量的个数)

  • 相关阅读:
    CSRF小结
    代码注入小结
    文件上传漏洞小结
    解决Burpsuite_pro_v1.6破解版https证书导入问题
    Java HTTP 组件库选型看这篇就够了
    趣图:我正在演示一个功能,但没有达到预期效果
    阅读源码的利器——Intellij-IDEA-Replace-in-Path-使用技巧
    分享一些好用的 Chrome 插件!
    趣图:程序员发量的变化过程
    Spring循环依赖的三种方式
  • 原文地址:https://www.cnblogs.com/nanocare/p/6019122.html
Copyright © 2011-2022 走看看