zoukankan      html  css  js  c++  java
  • Tensorflow Implementation of Yahoo's Open NSFW Model

    This repository contains an implementation of Yahoo's Open NSFW Classifier rewritten in tensorflow.

    The original caffe weights have been extracted using Caffe to TensorFlow. You can find them at data/open_nsfw-weights.npy.

    Prerequisites

    All code should be compatible with Python 3.6 and Tensorflow 1.0.0. The model implementation can be found in model.py.

    Usage

    > python classify_nsfw.py -m data/open_nsfw-weights.npy test.jpg
    
    Results for 'test.jpg'
    	SFW score:	0.9355766177177429
    	NSFW score:	0.06442338228225708
    

    Note: Currently only jpeg images are supported.

    classify_nsfw.py accepts some optional parameters you may want to play around with:

    usage: classify_nsfw.py [-h] -m MODEL_WEIGHTS [-l {yahoo,tensorflow}]
                            [-t {tensor,base64_jpeg}]
                            input_jpeg_file
    
    positional arguments:
      input_file            Path to the input image. Only jpeg images are
                            supported.
    
    optional arguments:
      -h, --help            show this help message and exit
      -m MODEL_WEIGHTS, --model_weights MODEL_WEIGHTS
                            Path to trained model weights file
      -l {yahoo,tensorflow}, --image_loader {yahoo,tensorflow}
                            image loading mechanism
      -t {tensor,base64_jpeg}, --input_type {tensor,base64_jpeg}
                            input type
    

    -l/--image-loader

    The classification tool supports two different image loading mechanisms.

    • yahoo (default) tries to replicate the image loading mechanism used by the original caffe implementation, differs a bit though. See Caveats below.
    • tensorflow is an image loader which uses tensorflow api's exclusively (no dependencies on PILskimage, etc.).

    Note: Classification results may vary depending on the selected image loader!

    -t/--input_type

    Determines if the model internally uses a float tensor (tensor - [None, 224, 224, 3] - default) or a base64 encoded string tensor (base64_jpeg - [None, ]) as input. If base64_jpeg is used, then the tensorflow image loader will be used, regardless of the -l/--image-loader argument.

    Tools

    The tools folder contains some utility scripts to test the model.

    export_model.py

    Exports the model using the standard tensorflow export api (SavedModel). The export can be used to deploy the model on Google Cloud ML EngineTensorflow Serving or on mobile (haven't tried that one yet).

    create_predict_request.py

    Takes an input image and spits out an json file suitable for prediction requests to a Open NSFW Model deployed on Google Cloud ML Engine (gcloud ml-engine predict).

    Caveats

    Image loading differences

    The classification results sometimes differ more and sometimes less from the original caffe implementation, depending on the image loader and input image. I haven't been able to figure out the cause for this yet. Any help on this would be appreciated.

  • 相关阅读:
    轮播闪白效果
    轮播图效果
    打字游戏简约版
    js购物时的放大镜效果
    单例模式
    docker
    【spring】注解梳理
    【spring源码-1】BeanFactory + XMLBeanFactory
    【设计模式】
    【大数据Spark】PC单机Spark开发环境搭建
  • 原文地址:https://www.cnblogs.com/native-hadoop/p/7728695.html
Copyright © 2011-2022 走看看