zoukankan      html  css  js  c++  java
  • HDU Common Subsequence

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 182 Accepted Submission(s): 109
    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
     
    Sample Input
    abcfbc abfcab
    programming contest 
    abcd mnp
     
    Sample Output
    4
    2
    0

    #include <iostream>
    using namespace
    std;
    int
    main()
    {

        string a,b;
        int
    i,j;
        int
    c[500][500],al,bl;
        while
    (cin>>a>>b)
        {

            al = a.length();
            bl = b.length();
            for
    (i = 0; i < al ; i++)

            c[i][0] = 0;
            for
    (i = 0; i < bl ; i++)

            c[0][i] = 0;
            for
    (i = 0;i < al; i++)
            for
    (j = 0;j < bl; j++)
            {

                if
    (a[i]==b[j])c[i+1][j+1] = c[i][j]+1;
                else

                {

                   c[i+1][j+1] = (c[i][j+1]>=c[i+1][j]?c[i][j+1]:c[i+1][j]);
                }
            }

            cout<<c[i][j]<<endl;
        }
    }
  • 相关阅读:
    leetcode 105. 从前序与中序遍历序列构造二叉树
    leetcode 96. 不同的二叉搜索树
    leetcode 21. 合并两个有序链表
    leetcode 617. 合并二叉树
    leetcode 101. 对称二叉树
    欧拉定理和扩展欧拉定理。
    [NOI2018] 屠龙勇士
    [SDOI2010]古代猪文
    [SDOI2013]方程
    扩展Lucas定理
  • 原文地址:https://www.cnblogs.com/newpanderking/p/2125827.html
Copyright © 2011-2022 走看看