zoukankan      html  css  js  c++  java
  • 线段树整理

    //每天整理一点,太多了 

    https://www.cnblogs.com/TheRoadToTheGold/p/6254255.html#4175712(ORZ)

    POJ  3468 板子题 注意下数据范围 (因为int会爆,以后一定好好看题,浪费我10min....)

    http://poj.org/problem?id=3468

    #include<iostream>//线段树题目集
    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int maxn = 4e5 + 15;
    typedef long long ll;
    typedef struct
    {
        ll l,r,sum,f;//sum为区间和,f为懒人标记
    }node;
    node Tree[maxn];//线段树
    ll n,q;
    ll _left,_right,value;
    void buildTree(int l,int r,int cur)
    {
        Tree[cur].l = l;
        Tree[cur].r = r;//左右区间范围
        if(l==r)
        {
            scanf("%lld",&Tree[cur].sum);
            return;
        }
        int mid = (l + r) >> 1;
        buildTree(l,mid,cur*2);
        buildTree(mid+1,r,cur<<1|1);
        Tree[cur].sum = Tree[cur<<1].sum + Tree[cur<<1|1].sum; 
    }//建树
    void Down(int cur)
    {
        Tree[2*cur].f += Tree[cur].f;
        Tree[2*cur+1].f += Tree[cur].f;
        Tree[2*cur].sum += (Tree[2*cur].r - Tree[2*cur].l + 1)*Tree[cur].f;
        Tree[2*cur+1].sum += (Tree[2*cur+1].r - Tree[2*cur+1].l + 1)*Tree[cur].f;
        Tree[cur].f = 0;//因为已经传下去了,所以清零
    }//懒标记下传
    ll ans;
    void ask_interval(int cur)
    {
        if(_left<=Tree[cur].l&&Tree[cur].r<=_right)
        {
            ans += Tree[cur].sum;
            return;
        }
        if(Tree[cur].f)
            Down(cur);//下传懒人标记
        ll mid = (Tree[cur].l + Tree[cur].r) >> 1;//mid 中间值
        if(_left<=mid)
            ask_interval(cur<<1);
        if(_right>mid)
            ask_interval(cur<<1|1);  
    }
    void change_interval(int cur)
    {
        if(_left<=Tree[cur].l&&Tree[cur].r<=_right)//if node 在区间范围内
        {
            Tree[cur].sum += (Tree[cur].r - Tree[cur].l + 1)*value;
            Tree[cur].f += value;
            return;
        }
        if(Tree[cur].f)
            Down(cur);
        ll mid = (Tree[cur].l + Tree[cur].r) >> 1;//mid 中间值
        if(_left<=mid)
            change_interval(cur<<1);
        if(_right>mid)
            change_interval(cur<<1|1);
        Tree[cur].sum = Tree[cur<<1].sum + Tree[cur<<1|1].sum;//(important) 更新完后一定要更新sum的总和值  
    }//线段树区间修改
    int main()
    {
        while(scanf("%lld%lld",&n,&q)==2)//写返回值,不然可能会有些很SB的output 超出limit
        {
            memset(Tree,0,sizeof(Tree));
            buildTree(1,n,1);//1 ~ n为范围,cur 为当前节点
            char cmd;
            while(q--)
            {
                ans = 0;
                getchar();
                scanf("%c",&cmd);//区间查询,区间修改
                scanf("%lld%lld",&_left,&_right);
                if(cmd=='Q')
                {   
                    ask_interval(1);
                    cout<<ans<<endl;
                }else{
                    scanf("%lld",&value);
                    change_interval(1);
                }
            }
        }
    }
    

     线段树 GSS1(求静态最大连续子段和)

    (挺简单的,看代码就好了)

    附个题目链接http://codevs.cn/problem/3981/

    #include<bits/stdc++.h>//线段树求GSS1(最长子区间范围)
    using namespace std;//主要同于解决求每一个区间范围内的最大连续子串
    const int maxn = 2e5 + 32;
    typedef long long i64;//GSS1 1.全在左子树上 2.全在右子树上 3.左右连续区间都存在
    template <typename T>
    void read(T &x) 
    {
        x=0; int f=1; char c=getchar();
        while(!isdigit(c)) { if(c=='-') f=-1; c=getchar(); }
        while(isdigit(c)) { x=x*10+c-'0'; c=getchar(); }
        x*=f;
    }
    void out(i64 ans)
    {
        if(ans<0) { putchar('-'); ans=-ans;}
        char s[20];  int len=0;
        do s[++len]=ans%10+'0'; while(ans/=10);
        while(len) putchar(s[len--]); putchar('
    ');
    }
    struct Node
    {
        i64 sum,lmx,rmx,mx;//sum为区间和,lmx最大左连续区间和,rmx最大右连续区间和,mx最大区间连续值
        void clear()
        {
            sum = lmx = rmx = mx = 0;
        }
    }Tree[4*maxn+1];
    typedef struct Node nd;
    void build_Tree(int node,int l,int r)
    {
        if(l==r)
        {
            read(Tree[node].mx);
            Tree[node].lmx = Tree[node].rmx = Tree[node].sum = Tree[node].mx;
            return;
        }
        int mid = (l + r) >> 1;
        build_Tree(node<<1,l,mid);
        build_Tree(node<<1|1,mid+1,r);
        Tree[node].mx = max(Tree[node<<1].mx,Tree[node<<1|1].mx);
        Tree[node].mx = max(Tree[node].mx,Tree[node<<1].rmx +  Tree[node<<1|1].lmx);
        Tree[node].lmx = max(Tree[node<<1].lmx,Tree[node<<1].sum+Tree[node<<1|1].lmx);
        Tree[node].rmx = max(Tree[node<<1|1].rmx,Tree[node<<1|1].sum + Tree[node<<1].rmx);
        Tree[node].sum = Tree[node<<1].sum + Tree[node<<1|1].sum; 
    }
    int n,m,l,r;
    nd query(int node,int left,int right)
    {
        if(l<=left&&right<=r)
            return Tree[node];
        int mid = (left + right) >> 1;
        if(r<=mid)
            return query(node<<1,left,mid);//全在左范围区间
        if(l>mid)
            return query(node<<1|1,mid+1,right);
        //(important) 和求区间和的板子有所不同,因为可能存在1 ~ 7这种线段树中本身不存在的node,因此需要
        //在左右区间都有的情况下分离出来,创造新节点并返回
        //左右区间都有 
        nd lchild;  lchild.clear();
        lchild = query(node<<1,left,mid);
        nd rchild;  rchild.clear();
        rchild = query(node<<1|1,mid+1,right);
        nd parent;  parent.clear();
        parent.mx = max(lchild.mx,rchild.mx);
        parent.mx = max(parent.mx,lchild.rmx+rchild.lmx);
        parent.lmx = max(lchild.lmx,lchild.sum + rchild.lmx);
        parent.rmx = max(rchild.rmx,rchild.sum + lchild.rmx);
        parent.sum = lchild.sum + rchild.sum;
        return parent;
    }
    int main()
    {
        read(n);
        build_Tree(1,1,n);
        read(m);
        for(int i=0;i!=m;++i)
        {
            read(l);
            read(r);
            i64 answer = query(1,1,n).mx;
            out(answer);
        }
    }
    

      

    不怕万人阻挡,只怕自己投降。
  • 相关阅读:
    2014-5-28 技能
    Python的包管理工具Pip
    vi 命令 使用方法
    oracle实例名,数据库名,服务名等概念差别与联系
    自己动手写操作系统--个人实践
    D3DXMatrixMultiply 函数
    port大全及port关闭方法
    原型模式
    ExecuteScalar
    第三章_JSP
  • 原文地址:https://www.cnblogs.com/newstartCY/p/11605226.html
Copyright © 2011-2022 走看看