zoukankan      html  css  js  c++  java
  • 04-04 AdaBoost算法代码(鸢尾花分类)


    更新、更全的《机器学习》的更新网站,更有python、go、数据结构与算法、爬虫、人工智能教学等着你:https://www.cnblogs.com/nickchen121/p/11686958.html

    AdaBoost算法代码(鸢尾花分类)

    一、导入模块

    import numpy as np
    import matplotlib.pyplot as plt
    from matplotlib.colors import ListedColormap
    from matplotlib.font_manager import FontProperties
    from sklearn.datasets import load_iris
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.ensemble import AdaBoostClassifier
    %matplotlib inline
    font = FontProperties(fname='/Library/Fonts/Heiti.ttc')
    

    二、导入数据

    X = iris_data.data[:, [2, 3]]
    y = iris_data.target
    label_list = ['山鸢尾', '杂色鸢尾', '维吉尼亚鸢尾']
    

    三、构造决策边界

    def plot_decision_regions(X, y, classifier=None):
        marker_list = ['o', 'x', 's']
        color_list = ['r', 'b', 'g']
        cmap = ListedColormap(color_list[:len(np.unique(y))])
    
        x1_min, x1_max = X[:, 0].min()-1, X[:, 0].max()+1
        x2_min, x2_max = X[:, 1].min()-1, X[:, 1].max()+1
        t1 = np.linspace(x1_min, x1_max, 666)
        t2 = np.linspace(x2_min, x2_max, 666)
    
        x1, x2 = np.meshgrid(t1, t2)
        y_hat = classifier.predict(np.array([x1.ravel(), x2.ravel()]).T)
        y_hat = y_hat.reshape(x1.shape)
        plt.contourf(x1, x2, y_hat, alpha=0.2, cmap=cmap)
        plt.xlim(x1_min, x1_max)
        plt.ylim(x2_min, x2_max)
    
        for ind, clas in enumerate(np.unique(y)):
            plt.scatter(X[y == clas, 0], X[y == clas, 1], alpha=0.8, s=50,
                        c=color_list[ind], marker=marker_list[ind], label=label_list[clas])
    

    四、训练模型

    4.1 训练模型(n_e=10, l_r=0.8)

    adbt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2, min_samples_split=20, min_samples_leaf=5),
                              algorithm="SAMME", n_estimators=10, learning_rate=0.8)
    adbt.fit(X, y)
    
    AdaBoostClassifier(algorithm='SAMME',
              base_estimator=DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=2,
                max_features=None, max_leaf_nodes=None,
                min_impurity_decrease=0.0, min_impurity_split=None,
                min_samples_leaf=5, min_samples_split=20,
                min_weight_fraction_leaf=0.0, presort=False, random_state=None,
                splitter='best'),
              learning_rate=0.8, n_estimators=10, random_state=None)
    

    4.2 可视化

    plot_decision_regions(X, y, classifier=adbt)
    plt.xlabel('花瓣长度(cm)', fontproperties=font)
    plt.ylabel('花瓣宽度(cm)', fontproperties=font)
    plt.title('AdaBoost算法代码(鸢尾花分类, n_e=10, l_r=0.8)',
              fontproperties=font, fontsize=20)
    plt.legend(prop=font)
    plt.show()
    

    png

    print("Score:{}".format(adbt.score(X, y)))
    
    Score:0.9866666666666667
    

    4.3 训练模型(n_estimators=300, learning_rate=0.8)

    adbt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2, min_samples_split=20, min_samples_leaf=5),
                              algorithm="SAMME", n_estimators=300, learning_rate=0.8)
    adbt.fit(X, y)
    print("Score:{}".format(adbt.score(X, y)))
    
    Score:0.9933333333333333
    

    由于样本太少,可能效果不明显,但是对比上一个模型可以发现,相同步长的情况下,如果弱学习个数越多,拟合效果越好,但如果过多则可能过拟合。

    4.4 训练模型(n_estimators=300, learning_rate=0.5)

    adbt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2, min_samples_split=20, min_samples_leaf=5),
                              algorithm="SAMME", n_estimators=300, learning_rate=0.001)
    adbt.fit(X, y)
    print("Score:{}".format(adbt.score(X, y)))
    
    Score:0.9533333333333334
    

    相同迭代次数的情况下,对比上一个模型可以发现,如果步长越大,则模型效果越好。

    4.5 训练模型(n_estimators=600, learning_rate=0.7)

    adbt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2, min_samples_split=20, min_samples_leaf=5),
                              algorithm="SAMME", n_estimators=600, learning_rate=0.8)
    adbt.fit(X, y)
    print("Score:{}".format(adbt.score(X, y)))
    
    Score:0.9933333333333333
    

    对比第二个模型,可以发现即使增加迭代次数,算法准确率也没有提高,所以n_estimators=300的时候其实算法就已经收敛了。

  • 相关阅读:
    [原] 秋叶原随景
    ReportViewer不连接数据库,自定义DataSet导出到报表
    【程序人生】一个程序员对学弟学妹建议(转)
    c#钩子学习笔记(一)
    解决关于多客户端操作数据库并发问题
    SQL Server 存储过程
    有关抽奖的一个算法
    c#发送邮件含附件
    CrystalReport不连接数据库,自定义DataSet导出到水晶报表
    c#钩子学习笔记(二)
  • 原文地址:https://www.cnblogs.com/nickchen121/p/11686780.html
Copyright © 2011-2022 走看看